時(shí)間:2023-03-27 16:50:05
導(dǎo)言:作為寫作愛好者,不可錯過為您精心挑選的10篇人工智能論文,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內(nèi)容能為您提供靈感和參考。
交流傳動瞬態(tài)轉(zhuǎn)矩具備較高的使用性能,它有著較強(qiáng)的控制性,僅次于直流電機(jī)。目前,直接轉(zhuǎn)矩控制(DTC)和矢量控制(VC)是比較常見的高性能交流傳動控制方法。當(dāng)前,不少廠商都順應(yīng)市場形勢,相繼推出了矢量控制交流傳動產(chǎn)品,而且無速度傳感器的矢量控制產(chǎn)品也大量上市。在性能較高的驅(qū)動產(chǎn)品中廣泛使用AI技術(shù),將會進(jìn)一步提高產(chǎn)品的使用性能,截至目前,僅有兩個廠家在其生產(chǎn)的產(chǎn)品中運(yùn)用人工智能(AI)控制器。而在十五年前,日本和德國的研究人員提出了直接轉(zhuǎn)矩控制這一概念,經(jīng)過了十年的發(fā)展演變過程,ABB公司面向市場,將直接轉(zhuǎn)矩控制的傳動產(chǎn)品引入市場,讓人們能夠直接感受直接轉(zhuǎn)矩控制的優(yōu)勢,從而開展相關(guān)的研究。可以預(yù)見,人工智能技術(shù)將會運(yùn)用到直接轉(zhuǎn)矩控制中,常規(guī)的電機(jī)數(shù)學(xué)模型將會被替代,從而退出市場。
人工智能控制器主要分三種類型,即:增強(qiáng)學(xué)習(xí)型、非監(jiān)督型和監(jiān)督型。當(dāng)前,常規(guī)的監(jiān)督學(xué)習(xí)型神經(jīng)網(wǎng)絡(luò)控制器的學(xué)習(xí)算法和拓?fù)浣Y(jié)構(gòu)已基本成型,這在一定程度上限制了此種結(jié)構(gòu)控制器的生產(chǎn)和使用,導(dǎo)致計(jì)算機(jī)計(jì)算時(shí)間增長,而且常規(guī)非人工智能學(xué)習(xí)算法在具體應(yīng)用上效果不明顯。而要克服這些困難,最好的辦法就是采用試探法和適應(yīng)神經(jīng)網(wǎng)絡(luò)。常規(guī)模糊控制器的模糊規(guī)則表和規(guī)則初值是“a-priori”型,這加劇了調(diào)整難度。假若該系統(tǒng)無有效的“a-priori”信息作為支撐,那么將導(dǎo)致系統(tǒng)陷入癱瘓。而要有效克服此類缺陷和困難,就可以運(yùn)用自適應(yīng)模糊神經(jīng)控制器,保證系統(tǒng)的正常運(yùn)轉(zhuǎn)。
二、電力系統(tǒng)中的智能控制
2園林設(shè)計(jì)中人工智能應(yīng)用現(xiàn)狀
2.1系統(tǒng)操作方面
由于園林設(shè)計(jì)既涉及藝術(shù)方法也涉及到技術(shù)手段,因此,對操作人員的綜合能力要求就比較高,也就是說,操作人員應(yīng)當(dāng)對建筑理論、園林綠植知識和計(jì)算機(jī)基礎(chǔ)三方面綜合掌握,而事實(shí)上,很多參與園林設(shè)計(jì)的人員并沒有很強(qiáng)的工程操作能力,要求太高,難以實(shí)現(xiàn)。
2.2園林可重復(fù)使用性方面
目前來說,園林的重復(fù)使用性還是太低,因?yàn)槊總€地方的氣候條件和地理環(huán)境都不相同,所以,針對一個地方所制作的園林設(shè)計(jì)并不能簡單地復(fù)制到另一個地方,如蘇州園林的設(shè)計(jì)不能直接用在遼寧的園林設(shè)計(jì),原因在于北方相對南方來說,園林供水相對困難,山石種類不同,綠植花卉種類也不如南方園林的豐富,而且南北審美觀不同,北方園林設(shè)計(jì)多采用渾厚石材,綠植多為松、柏、楊、柳、榆、槐,加上三季更迭的花灌木,呈現(xiàn)剛健雄渾的特點(diǎn),而南方則因?yàn)榛痉N類豐富,布局特別,注重山石與水的搭配,獨(dú)具精致淡雅的特點(diǎn),由此可見,園林的可重復(fù)使用性不高。
2.3計(jì)算機(jī)輔助設(shè)計(jì)方面
計(jì)算機(jī)輔助設(shè)計(jì)即常說的CAD。目前來說,CAD并不能完全對口符合園林設(shè)計(jì)的需求,因?yàn)镃AD只能呈現(xiàn)出單一的圖形畫面,既不利于設(shè)計(jì)者進(jìn)行設(shè)計(jì),也不利于客戶對設(shè)計(jì)者的設(shè)計(jì)的理解,導(dǎo)致客戶與設(shè)計(jì)者之間難免信息不對稱,造成一定的信息偏差,影響之后園林設(shè)計(jì)出來的成果。
3加強(qiáng)人工智能在園林設(shè)計(jì)中應(yīng)用的辦法
3.1園林子系統(tǒng)的設(shè)計(jì)
作為整個園林系統(tǒng)的組成部分,園林子系統(tǒng)的設(shè)定概要應(yīng)通過計(jì)算機(jī)實(shí)施建模,來對項(xiàng)目實(shí)施進(jìn)行基本設(shè)定,在獲得項(xiàng)目系統(tǒng)的自動生成規(guī)則之后,在對所收集到的園林基本數(shù)進(jìn)行存檔,來作為全局的運(yùn)行參數(shù),在一定程度上影響了計(jì)算機(jī)的運(yùn)行結(jié)果。一般來說,存檔信息有園林的設(shè)計(jì)規(guī)模、投資情況、發(fā)展需求以及相關(guān)的環(huán)境因素等,存檔后,可能會對建筑的規(guī)模大小、選址、風(fēng)格特點(diǎn)以及植物的搭配等造成影響。
3.2地形子系統(tǒng)的設(shè)計(jì)
地形子系統(tǒng)的設(shè)計(jì)應(yīng)當(dāng)是通過計(jì)算機(jī)對采集到的地質(zhì)數(shù)據(jù)進(jìn)行推理而后才進(jìn)行的。一般來說,會采用規(guī)則引擎最為計(jì)算機(jī)的推理機(jī),是基于專家系統(tǒng)的模式下進(jìn)行推理的,工作原理是由機(jī)器來仿造人類在對事件進(jìn)行考慮的思維和方法,通過進(jìn)行試探性的方法來進(jìn)行推理,并不斷地對推理所得出來的結(jié)果進(jìn)行解釋和驗(yàn)證。對地質(zhì)情況進(jìn)行實(shí)時(shí)實(shí)地勘查是保證園林設(shè)計(jì)圖紙正常輸出的要求,這是不能單純地依靠計(jì)算機(jī)來實(shí)現(xiàn)的,因?yàn)榈刭|(zhì)勘查涉及到很多復(fù)雜地形的勘查,只能依靠人工的方式。地質(zhì)勘查可以分為前期階段和后期階段。前期階段主要是設(shè)定園林工程的初稿,因此,只要對地質(zhì)情況進(jìn)行系統(tǒng)的粗略勘察即可。后期階段主要是完成圖紙?jiān)O(shè)計(jì)要求,因此,對數(shù)據(jù)準(zhǔn)確性要求更高,并勘查人員對此進(jìn)行較為細(xì)致的處理。這以后才是通過對計(jì)算機(jī)智能系統(tǒng)軟件的使用來將前期階段和后期階段所獲得的數(shù)據(jù)進(jìn)行智能化處理,完成相關(guān)數(shù)據(jù)的細(xì)化以及修正,然后通過系統(tǒng)推理得到一個初步的園林模型。
3.3主干道路子系統(tǒng)的設(shè)計(jì)
對地形子系統(tǒng)進(jìn)行地形數(shù)據(jù)的輸出即可得到主干道路設(shè)計(jì),因?yàn)槲覀兪紫韧瓿闪说匦蔚脑O(shè)計(jì),因此,在接下來對道路進(jìn)行設(shè)計(jì)的過程中就可以有效地避免其他的建筑和設(shè)施的干擾,這之后的設(shè)計(jì)才能按部就班地開展。推理的總體規(guī)則為:首先,由園林的建設(shè)規(guī)模、投資情況等來對道路的類型和所需費(fèi)用等進(jìn)行計(jì)算,得到相關(guān)數(shù)據(jù);然后,結(jié)合之前的輸出地形圖來生成推薦道路圖,并檢查道路的密度是否符合園林的設(shè)計(jì)規(guī)范,接著根據(jù)道路建設(shè)定額表來對工程造價(jià)進(jìn)行計(jì)算,看是否符合預(yù)期投資情況;最后,對道路圖進(jìn)行人工的調(diào)整,并反復(fù)驗(yàn)算。
2.電子機(jī)械工程中對人工智能的應(yīng)用
社會的發(fā)展需要物質(zhì)和信息的推動,在人類社會文明的最初階段,受生產(chǎn)力水平限制,社會的關(guān)注點(diǎn)都在物質(zhì)上,信息的傳遞方式過于單一。隨著人類文明的逐漸發(fā)展,人們發(fā)現(xiàn)了信息船體的重要性,而近年來人們進(jìn)入到了電子信息社會。電子信息社會需要人工智能技術(shù)的支撐,不論是建立模型和使對模型進(jìn)行控制,對故障進(jìn)行診斷,在機(jī)械電子工程中,人工智能對信息處理都有著重要作用。機(jī)械電子系統(tǒng)本身的穩(wěn)定性較差,因此對電子信心系統(tǒng)的輸出與輸入的描述就變的額外困難,傳統(tǒng)的描述方法主要有以下三種:(1)數(shù)學(xué)方程推導(dǎo)。(2)拼成知識。(3)建設(shè)規(guī)則庫。傳統(tǒng)的數(shù)學(xué)解析精確、嚴(yán)密,但只能在簡單的系統(tǒng)中應(yīng)用,例如,線性定常系統(tǒng),如果系統(tǒng)過于復(fù)雜,則無法給出對應(yīng)的數(shù)學(xué)解析式,因此在實(shí)際工作中只能通過操作實(shí)現(xiàn)?,F(xiàn)代的社會越來越發(fā)展,設(shè)備經(jīng)常需要對不同類型的信息進(jìn)行處理,例如傳感器需要傳遞的專家語言和數(shù)字信息。因?yàn)槿斯ぶ悄茉谛畔⒊鰜砩暇哂袕?fù)雜性、不確定性、因此在機(jī)械電子工程中利用人工智能信息處理代替解析數(shù)學(xué)。通過人工智能而建立的系統(tǒng)通常分為以下兩類:(1)神經(jīng)網(wǎng)絡(luò)系統(tǒng),人工智能是計(jì)算機(jī)的一個分支,在研究過程中利用計(jì)算機(jī)對人行為和思維過程進(jìn)行模擬,可以實(shí)現(xiàn)對計(jì)算的高層次應(yīng)用。神經(jīng)網(wǎng)絡(luò)主要是利用神經(jīng)元的興奮將信息分布在網(wǎng)絡(luò)上,同時(shí)可以實(shí)時(shí)的進(jìn)行動態(tài)相互作用。人工神經(jīng)網(wǎng)絡(luò)主要具有分布式存儲信息和協(xié)同處理信息特點(diǎn),雖然其功能有限、結(jié)構(gòu)簡單,但通過神經(jīng)元而構(gòu)建的神經(jīng)網(wǎng)絡(luò)可以實(shí)現(xiàn)許多行為,滿足人們在生產(chǎn)過程中的需求。此外,通過神經(jīng)網(wǎng)絡(luò)能夠?qū)崿F(xiàn)對大腦結(jié)構(gòu)進(jìn)行模擬,對數(shù)字信號進(jìn)行分析,并提供參考值,同時(shí)可以利用相關(guān)的網(wǎng)絡(luò)形式實(shí)現(xiàn)連續(xù)函數(shù)。神經(jīng)網(wǎng)路系統(tǒng)在映射上采用的點(diǎn)對點(diǎn)的方式,進(jìn)行數(shù)據(jù)輸入時(shí),每個神經(jīng)元之間都會存在固定的聯(lián)系,輸出輸入都具有較高的精準(zhǔn)度,且計(jì)算量大。(2)模糊推理系統(tǒng),模糊集合論是模糊推理系統(tǒng)的基礎(chǔ),模糊理論是設(shè)計(jì)的主要工具,能夠?qū)δ:畔⑦M(jìn)行處理,是一種功能強(qiáng)大的系統(tǒng)。隨著科技的高速發(fā)展,模糊推理系統(tǒng)已經(jīng)在數(shù)據(jù)處理、自動化控制方面得到了廣泛應(yīng)用,并取得了不錯的成效。機(jī)械電子系統(tǒng)中,模糊推理系統(tǒng)主要通過對人大腦功能進(jìn)行模擬,實(shí)現(xiàn)對語言信號的分析,同時(shí)通過網(wǎng)絡(luò)結(jié)構(gòu)無限接近連續(xù)函數(shù),這與神經(jīng)網(wǎng)絡(luò)系統(tǒng)十分相近。模糊推理系的物理意義十分明確,在信息的存儲上通過域到域的映射方式完成,但此系統(tǒng)的計(jì)算量較小,不存在固定連接,因此同神經(jīng)網(wǎng)絡(luò)系統(tǒng)相比輸出和輸入的精準(zhǔn)度更低。
一、人工智能的定義
“人工智能”(ArtificialIntelligence)一詞最初是在1956年Dartmouth學(xué)會上提出的。人工智能是指研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。人工智能是計(jì)算機(jī)科學(xué)的一個分支,它企圖了解智能的實(shí)質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機(jī)器。目前能夠用來研究人工智能的主要物質(zhì)手段以及能夠?qū)崿F(xiàn)人工智能技術(shù)的機(jī)器就是計(jì)算機(jī),人工智能的發(fā)展歷史是和計(jì)算機(jī)科學(xué)與技術(shù)的發(fā)展史聯(lián)系在一起的。
人工智能理論進(jìn)入21世紀(jì),正醞釀著新的突破,人工智能的研究成果將能夠創(chuàng)造出更多更高級的智能“制品”,并使之在越來越多的領(lǐng)域超越人類智能,人工智能將為發(fā)展國民經(jīng)濟(jì)和改善人類生活做出更大貢獻(xiàn)。
二、人工智能的應(yīng)用領(lǐng)域
1.在管理系統(tǒng)中的應(yīng)用
(1)人工智能應(yīng)用于企業(yè)管理的意義主要不在于提高效率,而是用計(jì)算機(jī)實(shí)現(xiàn)人們非常需要做,但工業(yè)工程信息技術(shù)是靠人工卻做不了或是很難做到的事情。在《談?wù)勅斯ぶ悄茉谄髽I(yè)管理中的應(yīng)用》一文中劉玉然指出把人工智能應(yīng)用于企業(yè)管理中,以數(shù)據(jù)管理和處理為中心,圍繞企業(yè)的核心業(yè)務(wù)和主導(dǎo)流程建立若干個主題數(shù)據(jù)庫,而所有的應(yīng)用系統(tǒng)應(yīng)該圍繞主題數(shù)據(jù)庫來建立和運(yùn)行。換句話說,就是將企業(yè)各部門的數(shù)據(jù)進(jìn)行統(tǒng)一集成管理,搭建人工智能的應(yīng)用平臺,使之成為企業(yè)管理與決策中的關(guān)鍵因子。
(2)智能教學(xué)系統(tǒng)(ITS)是人工智能與教育結(jié)合的主要形式,也是今后教學(xué)系統(tǒng)的發(fā)展方向。信息技術(shù)的飛速發(fā)展以及新的教學(xué)系統(tǒng)開發(fā)模式的提出和不斷完善,推動人們綜合運(yùn)用超媒體技術(shù)、網(wǎng)絡(luò)基礎(chǔ)和人工智能技術(shù)區(qū)開發(fā)新的教學(xué)系統(tǒng),計(jì)算機(jī)智能教學(xué)系統(tǒng)就是其中的典型代表。計(jì)算機(jī)智能教學(xué)系統(tǒng)包含學(xué)生模塊、教師模塊,體現(xiàn)了教學(xué)系統(tǒng)開發(fā)的全部內(nèi)容,擁有著不可比擬的優(yōu)勢和極大的吸引力。
2.在工程領(lǐng)域的應(yīng)用
(1)醫(yī)學(xué)專家系統(tǒng)是人工智能和專家系統(tǒng)理論和技術(shù)在醫(yī)學(xué)領(lǐng)域的重要應(yīng)用,具有極大的科研和應(yīng)用價(jià)值,它可以幫助醫(yī)生解決復(fù)雜的醫(yī)學(xué)問題,作為醫(yī)生診斷、治療的輔助工具。事實(shí)上,早在1982年,美國匹茲堡大學(xué)的Miller就發(fā)表了著名的作為內(nèi)科醫(yī)生咨詢的Internist2Ⅰ內(nèi)科計(jì)算機(jī)輔助診斷系統(tǒng)的研究成果,由此,掀起了醫(yī)學(xué)智能系統(tǒng)開發(fā)與應(yīng)用的。目前,醫(yī)學(xué)智能系統(tǒng)已通過其在醫(yī)學(xué)影像方面的重要作用,從而應(yīng)用于內(nèi)科、骨科等多個醫(yī)學(xué)領(lǐng)域中,并在不斷發(fā)展完善中。
(2)地質(zhì)勘探、石油化工等領(lǐng)域是人工智能的主要作用發(fā)揮領(lǐng)地。1978年美國斯坦福國際研究所就研發(fā)制成礦藏勘探和評價(jià)專家系統(tǒng)“PROSPECTOR”,該系統(tǒng)用于勘探評價(jià)、區(qū)域資源估值和鉆井井位選擇等,是工業(yè)領(lǐng)域的首個人工智能專家系統(tǒng),其發(fā)現(xiàn)了一個鉬礦沉積,價(jià)值超過1億美元。
3.在技術(shù)研究中的應(yīng)用
(1)在超聲無損檢測(NDT)與無損評價(jià)(NDE)領(lǐng)域中,目前主要廣泛采用專家系統(tǒng)方法對超聲損傷(UT)中缺陷的性質(zhì)、形狀和大小進(jìn)行判斷和歸類;專家運(yùn)用超聲無損檢測儀器,以其高精度的運(yùn)算、控制和邏輯判斷力代替大量人的體力與腦力勞動,減少了任務(wù)因素造成的無擦,提高了檢測的可靠性,實(shí)現(xiàn)了超聲檢測和評價(jià)的自動化、智能化。
(2)人工智能在電子技術(shù)領(lǐng)域的應(yīng)用可謂由來已久。隨著網(wǎng)絡(luò)的迅速發(fā)展,網(wǎng)絡(luò)技術(shù)的安全是我們關(guān)心的重點(diǎn),因此我們必須在傳統(tǒng)技術(shù)的基礎(chǔ)上進(jìn)行網(wǎng)絡(luò)安全技術(shù)的改進(jìn)和變更,大力發(fā)展數(shù)據(jù)挖掘技術(shù)、人工免疫技術(shù)等高效的AI技術(shù),開發(fā)更高級AI通用和專用語言,和應(yīng)用環(huán)境以及開發(fā)專用機(jī)器,而與人工智能技術(shù)則為我們提供了可能性。
三、人工智能的發(fā)展方向
1.專家系統(tǒng)是目前人工智能中最活躍、最有成效的一個研究領(lǐng)域,它是一種具有特定領(lǐng)域內(nèi)大量知識與經(jīng)驗(yàn)的程序系統(tǒng)。近年來,在“專家系統(tǒng)”或“知識工程”的研究中已出現(xiàn)了成功和有效應(yīng)用人工智能技術(shù)的趨勢。人類專家由于具有豐富的知識,所以才能達(dá)到優(yōu)異的解決問題的能力。那么計(jì)算機(jī)程序如果能體現(xiàn)和應(yīng)用這些知識,也應(yīng)該能解決人類專家所解決的問題,而且能幫助人類專家發(fā)現(xiàn)推理過程中出現(xiàn)的差錯,現(xiàn)在這一點(diǎn)已被證實(shí)。
2.智能信息檢索技術(shù)的飛速發(fā)展。人工智能在網(wǎng)絡(luò)信息檢索中的應(yīng)用,主要表現(xiàn)在:(1)如何利用計(jì)算機(jī)軟硬件系統(tǒng)模仿、延伸與擴(kuò)展人類智能的理論、方法和技術(shù)。(2)由于網(wǎng)絡(luò)知識信息既包括規(guī)律性的知識,如一般原理概念,也包括大量的經(jīng)驗(yàn)知識這些知識不可避免地帶有模糊性、隨機(jī)性、不可靠性等不確定性因素對其進(jìn)行推理,需要利用人工智能的研究成果。
3.SOAr是一種通用智能體系結(jié)構(gòu),其始終處在人工智能研究的前沿,已顯示出強(qiáng)大的問題求解能力,它認(rèn)為機(jī)器人的開發(fā)是人工智能應(yīng)用的重要領(lǐng)域。在它的研究中突出4個概念:(1)所處的境遇機(jī)器人不涉及抽象的描述,而是處在直接影響系統(tǒng)的行為的境地。(2)具體化機(jī)器人有軀干,有直接來自周圍世界的經(jīng)驗(yàn),他們的感官起作用后會有反饋。(3)智能的來源不僅僅是限于計(jì)算裝置,也是由于與周圍進(jìn)行交互的動態(tài)決定。(4)浮現(xiàn)從系統(tǒng)與周圍世界的交互以及有時(shí)候系統(tǒng)的部件間的交互浮現(xiàn)出智能。目前,國內(nèi)外不少學(xué)者都對機(jī)器人足球系統(tǒng)頗感興趣,足球機(jī)器人涉及機(jī)器人學(xué)、人工智能以及人工生命、智能控制等多個領(lǐng)域。足球機(jī)器人系統(tǒng)本身既是一個典型的多智能體系統(tǒng),是一個多機(jī)器人協(xié)作自治系統(tǒng),同時(shí)又為它們的理論研究和模型測試提供一個標(biāo)準(zhǔn)的實(shí)驗(yàn)平臺。
參考文獻(xiàn):
[1]元慧.議當(dāng)代人工智能的應(yīng)用領(lǐng)域和發(fā)展?fàn)顩r[J].福建電腦,2008.
[2]劉玉然.談?wù)勅斯ぶ悄茉谄髽I(yè)管理中的應(yīng)用[J].價(jià)值工程,2003.
[3]焦加麟,徐良賢,戴克昌.人工智能在智能教學(xué)系統(tǒng)中的應(yīng)用[J].計(jì)算機(jī)仿真,2003,(8).
[4]周明正.人工智能在醫(yī)學(xué)專家系統(tǒng)中的應(yīng)用[J].科技信息,2007.
[5]張海燕,劉鎮(zhèn)清.人工智能及其在超聲無損檢測中的應(yīng)用[J].無損檢測,2001,(8).
【正文】
一、人工智能法律系統(tǒng)的歷史
計(jì)算機(jī)先驅(qū)思想家萊布尼茲曾這樣不無浪漫地談到推理與計(jì)算的關(guān)系:“我們要造成這樣一個結(jié)果,使所有推理的錯誤都只成為計(jì)算的錯誤,這樣,當(dāng)爭論發(fā)生的時(shí)候,兩個哲學(xué)家同兩個計(jì)算家一樣,用不著辯論,只要把筆拿在手里,并且在算盤面前坐下,兩個人面對面地說:讓我們來計(jì)算一下吧!”(注:轉(zhuǎn)引自肖爾茲著:《簡明邏輯史》,張家龍譯,商務(wù)印書館1977年版,第54頁。)
如果連抽象的哲學(xué)推理都能轉(zhuǎn)變?yōu)橛?jì)算問題來解決,法律推理的定量化也許還要相對簡單一些。盡管理論上的可能性與技術(shù)可行性之間依然存在著巨大的鴻溝,但是,人工智能技術(shù)的發(fā)展速度確實(shí)令人驚嘆。從誕生至今的短短45年內(nèi),人工智能從一般問題的研究向特殊領(lǐng)域不斷深入。1956年紐厄爾和西蒙教授的“邏輯理論家”程序,證明了羅素《數(shù)學(xué)原理》第二章52個定理中的38個定理。塞繆爾的課題組利用對策論和啟發(fā)式探索技術(shù)開發(fā)的具有自學(xué)習(xí)能力的跳棋程序,在1959年擊敗了其設(shè)計(jì)者,1962年擊敗了州跳棋冠軍,1997年超級計(jì)算機(jī)“深藍(lán)”使世界頭號國際象棋大師卡斯帕羅夫俯首稱臣。
20世紀(jì)60年代,人工智能研究的主要課題是博弈、難題求解和智能機(jī)器人;70年代開始研究自然語言理解和專家系統(tǒng)。1971年費(fèi)根鮑姆教授等人研制出“化學(xué)家系統(tǒng)”之后,“計(jì)算機(jī)數(shù)學(xué)家”、“計(jì)算機(jī)醫(yī)生”等系統(tǒng)相繼誕生。在其他領(lǐng)域?qū)<蚁到y(tǒng)研究取得突出成就的鼓舞下,一些律師提出了研制“法律診斷”系統(tǒng)和律師系統(tǒng)的可能性。(注:SimonChalton,LegalDiagnostics,ComputersandLaw,No.25,August1980.pp.13-15.BryanNiblett,ExpertSystemsforLawyers,ComputersandLaw,No.29,August1981.p.2.)
1970年Buchanan&Headrick發(fā)表了《關(guān)于人工智能和法律推理若干問題的考察》,一文,拉開了對法律推理進(jìn)行人工智能研究的序幕。文章認(rèn)為,理解、模擬法律論證或法律推理,需要在許多知識領(lǐng)域進(jìn)行艱難的研究。首先要了解如何描述案件、規(guī)則和論證等幾種知識類型,即如何描述法律知識,其中處理開放結(jié)構(gòu)的法律概念是主要難題。其次,要了解如何運(yùn)用各種知識進(jìn)行推理,包括分別運(yùn)用規(guī)則、判例和假設(shè)的推理,以及混合運(yùn)用規(guī)則和判例的推理。再次,要了解審判實(shí)踐中法律推理運(yùn)用的實(shí)際過程,如審判程序的運(yùn)行,規(guī)則的適用,事實(shí)的辯論等等。最后,如何將它們最終運(yùn)用于編制能執(zhí)行法律推理和辯論任務(wù)的計(jì)算機(jī)程序,區(qū)別和分析不同的案件,預(yù)測并規(guī)避對手的辯護(hù)策略,建立巧妙的假設(shè)等等。(注:Buchanan&Headrick,SomeSpeculationAboutArtificialIntelligenceandLegalReasoning,23StanfordLawReview(1970).pp.40-62.)法律推理的人工智能研究在這一時(shí)期主要沿著兩條途徑前進(jìn):一是基于規(guī)則模擬歸納推理,70年代初由WalterG.Popp和BernhardSchlink開發(fā)了JUDITH律師推理系統(tǒng)。二是模擬法律分析,尋求在模型與以前貯存的基礎(chǔ)數(shù)據(jù)之間建立實(shí)際聯(lián)系,并僅依這種關(guān)聯(lián)的相似性而得出結(jié)論。JeffreyMeld-man1977年開發(fā)了計(jì)算機(jī)輔助法律分析系統(tǒng),它以律師推理為模擬對象,試圖識別與案件事實(shí)模型相似的其他案件??紤]到律師分析案件既用歸納推理又用演繹推理,程序?qū)烧叨冀o予了必要的關(guān)注,并且包括了各種水平的分析推理方法。
專家系統(tǒng)在法律中的第一次實(shí)際應(yīng)用,是D.沃特曼和M.皮特森1981年開發(fā)的法律判決輔助系統(tǒng)(LDS)。研究者探索將其當(dāng)作法律適用的實(shí)踐工具,對美國民法制度的某個方面進(jìn)行檢測,運(yùn)用嚴(yán)格責(zé)任、相對疏忽和損害賠償?shù)饶P?,?jì)算出責(zé)任案件的賠償價(jià)值,并論證了如何模擬法律專家意見的方法論問題。(注:''''ModelsofLegalDecisionmakingReport'''',R-2717-ICJ(1981).)
我國法律專家系統(tǒng)的研制于20世紀(jì)80年代中期起步。(注:錢學(xué)森教授:《論法治系統(tǒng)工程的任務(wù)與方法》(《科技管理研究》1981年第4期)、《社會主義和法治學(xué)與現(xiàn)代科學(xué)技術(shù)》(《法制建設(shè)》1984年第3期)、《現(xiàn)代科學(xué)技術(shù)與法和法制建設(shè)》(《政法論壇》)1985年第3期)等文章,為我國法律專家系統(tǒng)的研發(fā)起了思想解放和理論奠基作用。)1986年由朱華榮、肖開權(quán)主持的《量刑綜合平衡與電腦輔助量刑專家系統(tǒng)研究》被確定為國家社科“七五”研究課題,它在建立盜竊罪量刑數(shù)學(xué)模型方面取得了成果。在法律數(shù)據(jù)庫開發(fā)方面,1993年中山大學(xué)學(xué)生胡釗、周宗毅、汪宏杰等人合作研制了《LOA律師辦公自動化系統(tǒng)》。(注:楊建廣、駱梅芬編著:《法治系統(tǒng)工程》,中山大學(xué)出版社1996年版,第344-349頁。)1993年武漢大學(xué)法學(xué)院趙廷光教授主持開發(fā)了《實(shí)用刑法專家系統(tǒng)》。(注:趙廷光等著:《實(shí)用刑法專家系統(tǒng)用戶手冊》,北京新概念軟件研究所1993年版。)它由咨詢檢索系統(tǒng)、輔助定性系統(tǒng)和輔助量刑系統(tǒng)組成,具有檢索刑法知識和對刑事個案進(jìn)行推理判斷的功能。
專家系統(tǒng)與以往的“通用難題求解”相比具有以下特點(diǎn):(1)它要解決復(fù)雜的實(shí)際問題,而不是規(guī)則簡單的游戲或數(shù)學(xué)定理證明問題;(2)它面向更加專門的應(yīng)用領(lǐng)域,而不是單純的原理性探索;(3)它主要根據(jù)具體的問題域,選擇合理的方法來表達(dá)和運(yùn)用特殊的知識,而不強(qiáng)調(diào)與問題的特殊性無關(guān)的普適性推理和搜索策略。
法律專家系統(tǒng)在法規(guī)和判例的輔助檢索方面確實(shí)發(fā)揮了重要作用,解放了律師一部分腦力勞動。但絕大多數(shù)專家系統(tǒng)目前只能做法律數(shù)據(jù)的檢索工作,缺乏應(yīng)有的推理功能。20世紀(jì)90年代以后,人工智能法律系統(tǒng)進(jìn)入了以知識工程為主要技術(shù)手段的開發(fā)時(shí)期。知識工程是指以知識為處理對象,以能在計(jì)算機(jī)上表達(dá)和運(yùn)用知識的技術(shù)為主要手段,研究知識型系統(tǒng)的設(shè)計(jì)、構(gòu)造和維護(hù)的一門更加高級的人工智能技術(shù)。(注:《中國大百科全書·自動控制與系統(tǒng)工程》,中國大百科全書出版社1991年版,第579頁。)知識工程概念的提出,改變了以往人們認(rèn)為幾個推理定律再加上強(qiáng)大的計(jì)算機(jī)就會產(chǎn)生專家功能的信念。以知識工程為技術(shù)手段的法律系統(tǒng)研制,如果能在法律知識的獲得、表達(dá)和應(yīng)用等方面獲得突破,將會使人工智能法律系統(tǒng)的研制產(chǎn)生一個質(zhì)的飛躍。
人工智能法律系統(tǒng)的發(fā)展源于兩種動力。其一是法律實(shí)踐自身的要求。隨著社會生活和法律關(guān)系的復(fù)雜化,法律實(shí)踐需要新的思維工具,否則,法律家(律師、檢察官和法官)將無法承受法律文獻(xiàn)日積月累和法律案件不斷增多的重負(fù)。其二是人工智能發(fā)展的需要。人工智能以模擬人的全部思維活動為目標(biāo),但又必須以具體思維活動一城一池的攻克為過程。它需要通過對不同思維領(lǐng)域的征服,來證明知識的每個領(lǐng)域都可以精確描述并制造出類似人類智能的機(jī)器。此外,人工智能選擇法律領(lǐng)域?qū)で笸黄?,還有下述原因:(1)盡管法律推理十分復(fù)雜,但它有相對穩(wěn)定的對象(案件)、相對明確的前提(法律規(guī)則、法律事實(shí))及嚴(yán)格的程序規(guī)則,且須得出確定的判決結(jié)論。這為人工智能模擬提供了極為有利的條件。(2)法律推理特別是抗辯制審判中的司法推理,以明確的規(guī)則、理性的標(biāo)準(zhǔn)、充分的辯論,為觀察思維活動的軌跡提供了可以記錄和回放的樣本。(3)法律知識長期的積累、完備的檔案,為模擬法律知識的獲得、表達(dá)和應(yīng)用提供了豐富、準(zhǔn)確的資料。(4)法律活動所特有的自我意識、自我批評精神,對法律程序和假設(shè)進(jìn)行檢驗(yàn)的傳統(tǒng),為模擬法律推理提供了良好的反思條件。
二、人工智能法律系統(tǒng)的價(jià)值
人工智能法律系統(tǒng)的研制對法學(xué)理論和法律實(shí)踐的價(jià)值和意義,可以概括為以下幾點(diǎn):
一是方法論啟示。P.Wahlgren說:“人工智能方法的研究可以支持和深化在創(chuàng)造性方法上的法理學(xué)反思。這個信仰反映了法理學(xué)可以被視為旨在于開發(fā)法律分析和法律推理之方法的活動。從法理學(xué)的觀點(diǎn)看,這種研究的最終目標(biāo)是揭示方法論的潛在作用,從而有助于開展從法理學(xué)觀點(diǎn)所提出的解決方法的討論,而不僅僅是探討與計(jì)算機(jī)科學(xué)和人工智能有關(guān)的非常細(xì)致的技術(shù)方面?!保ㄗⅲ篜.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)在模擬法律推理的過程中,法學(xué)家通過與工人智能專家的密切合作,可以從其對法律推理的獨(dú)特理解中獲得有關(guān)方法論方面的啟示。例如,由于很少有兩個案件完全相似,在判例法實(shí)踐中,總有某些不相似的方面需要法律家運(yùn)用假設(shè)來分析已有判例與現(xiàn)實(shí)案件的相關(guān)性程度。但法學(xué)家們在假設(shè)的性質(zhì)問題上常常莫衷一是。然而HYPO的設(shè)計(jì)者,在無真實(shí)判例或真實(shí)判例不能充分解釋現(xiàn)實(shí)案件的情況下,以假設(shè)的反例來反駁對方的觀點(diǎn),用補(bǔ)充、刪減和改變事實(shí)的機(jī)械論方法來生成假設(shè)。這種用人工智能方法來處理假設(shè)的辦法,就使復(fù)雜問題變得十分簡單:假設(shè)實(shí)際上是一個新的論證產(chǎn)生于一個經(jīng)過修正的老的論證的過程。總之,人工智能方法可以幫助法學(xué)家跳出法理學(xué)方法的思維定勢,用其他學(xué)科的方法來重新審視法學(xué)問題,從而為法律問題的解決提供了新的途徑。
二是提供了思想實(shí)驗(yàn)手段。西蒙認(rèn)為,盡管我們還不知道思維在頭腦中是怎樣由生理作用完成的,“但我們知道這些處理在數(shù)字電子計(jì)算機(jī)中是由電子作用完成的。給計(jì)算機(jī)編程序使之思維,已經(jīng)證明有可能為思維提供機(jī)械論解釋”。(注:轉(zhuǎn)引自童天湘:《人工智能與第N代計(jì)算機(jī)》,載《哲學(xué)研究》1985年第5期。)童天湘先生認(rèn)為:“通過編制有關(guān)思維活動的程序,就會加深對思維活動具體細(xì)節(jié)的了解,并將這種程序送進(jìn)計(jì)算機(jī)運(yùn)行,檢驗(yàn)其正確性。這是一種思想實(shí)驗(yàn),有助于我們研究人腦思維的機(jī)理?!保ㄗⅲ恨D(zhuǎn)引自童天湘:《人工智能與第N代計(jì)算機(jī)》,載《哲學(xué)研究》1985年第5期。)人工智能法律系統(tǒng)研究的直接目標(biāo)是使計(jì)算機(jī)能夠獲取、表達(dá)和應(yīng)用法律知識,軟件工程師為模擬法律推理而編制程序,必須先對人的推理過程作出基于人工智能理論和方法的獨(dú)特解釋。人工智能以功能模擬開路,在未搞清法律家的推理結(jié)構(gòu)之前,首先從功能上對法律證成、法律檢索、法律解釋、法律適用等法律推理的要素和活動進(jìn)行數(shù)理分析,將法理學(xué)、訴訟法學(xué)關(guān)于法律推理的研究成果模型化,以實(shí)現(xiàn)法律推理知識的機(jī)器表達(dá)或再現(xiàn),從而為認(rèn)識法律推理的過程和規(guī)律提供了一種實(shí)驗(yàn)手段。法學(xué)家則可以將人工智能法律系統(tǒng)的推理過程、方法和結(jié)論與人類法律推理活動相對照,為法律推理的法理學(xué)研究所借鑒。因此,用人工智能方法模擬法律推理,深化了人們對法律推理性質(zhì)、要素和過程的認(rèn)識,使法學(xué)家得以借助人工智能科學(xué)的敏銳透鏡去考察法律推理的微觀機(jī)制。正是在這個意義上,BryanNiblett教授說:“一個成功的專家系統(tǒng)很可能比其他的途徑對法理學(xué)作出更多的(理論)貢獻(xiàn)?!保ㄗⅲ築ryanNiblett,ExpertSystemsforLawyers,ComputersandLaw,No.29,August1981.note14,p.3.)
三是輔助司法審判。按照格雷的觀點(diǎn),法律專家系統(tǒng)首先在英美判例法國家出現(xiàn)的直接原因在于,浩如煙海的判例案卷如果沒有計(jì)算機(jī)編纂、分類、查詢,這種法律制度簡直就無法運(yùn)轉(zhuǎn)了。(注:PamelaN.GrayBrookfield,ArtificialLegalIntelligence,VT:DartmouthPublishingCo.,1997.p.402.)其實(shí)不僅是判例法,制定法制度下的律師和法官往往也要為檢索有關(guān)的法律、法規(guī)和司法解釋耗費(fèi)大量的精力和時(shí)間,而且由于人腦的知識和記憶能力有限,還存在著檢索不全面、記憶不準(zhǔn)確的問題。人工智能法律系統(tǒng)強(qiáng)大的記憶和檢索功能,可以彌補(bǔ)人類智能的某些局限性,幫助律師和法官從事相對簡單的法律檢索工作,從而極大地解放律師和法官的腦力勞動,使其能夠集中精力從事更加復(fù)雜的法律推理活動。
四是促進(jìn)司法公正。司法推理雖有統(tǒng)一的法律標(biāo)準(zhǔn),但法官是具有主觀能動性的差異個體,所以在執(zhí)行統(tǒng)一標(biāo)準(zhǔn)時(shí)會產(chǎn)生一些差異的結(jié)果。司法解釋所具有的建構(gòu)性、辯證性和創(chuàng)造性的特點(diǎn),進(jìn)一步加劇了這種差異。如果換了鋼鐵之軀的機(jī)器,這種由主觀原因所造成的差異性就有可能加以避免。這當(dāng)然不是說讓計(jì)算機(jī)完全取代法官,而是說,由于人工智能法律系統(tǒng)為司法審判提供了相對統(tǒng)一的推理標(biāo)準(zhǔn)和評價(jià)標(biāo)準(zhǔn),從而可以輔助法官取得具有一貫性的判決。無論如何,我們必須承認(rèn),鋼鐵之軀的機(jī)器沒有物質(zhì)欲望和感情生活,可以比人更少地受到外界因素的干擾。正像計(jì)算機(jī)錄取增強(qiáng)了高考招生的公正性、電子監(jiān)視器提高了糾正行車違章的公正性一樣,智能法律系統(tǒng)在庭審中的運(yùn)用有可能減少某些現(xiàn)象。
五是輔助法律教育和培訓(xùn)。人工智能法律系統(tǒng)凝聚了法律家的專門知識和法官群體的審判經(jīng)驗(yàn),如果通過軟件系統(tǒng)或計(jì)算機(jī)網(wǎng)絡(luò)實(shí)現(xiàn)專家經(jīng)驗(yàn)和知識的共享,便可在法律教育和培訓(xùn)中發(fā)揮多方面的作用。例如,(1)在法學(xué)院教學(xué)中發(fā)揮模擬法庭的作用,可以幫助法律專業(yè)學(xué)生鞏固自己所學(xué)知識,并將法律知識應(yīng)用于模擬的審判實(shí)踐,從而較快地提高解決法律實(shí)踐問題的能力。(2)幫助新律師和新法官全面掌握法律知識,迅速獲得判案經(jīng)驗(yàn),在審判過程的跟蹤檢測和判決結(jié)論的動態(tài)校正中增長知識和才干,較快地接近或達(dá)到專家水平。(3)可使不同地區(qū)、不同層次的律師和法官及時(shí)獲得有關(guān)法律問題的咨詢建議,彌補(bǔ)因知識結(jié)構(gòu)差異和判案經(jīng)驗(yàn)多寡而可能出現(xiàn)的失誤。(4)可以為大眾提供及時(shí)的法律咨詢,提高廣大人民群眾的法律素質(zhì),增強(qiáng)法律意識。
六是輔助立法活動。人工智能法律系統(tǒng)不僅對輔助司法審判有重要的意義,而且對完善立法也具有實(shí)用價(jià)值。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)例如,倫敦大學(xué)Imperial學(xué)院的邏輯程序組將1981年英國國籍法的內(nèi)容形式化,幫助立法者發(fā)現(xiàn)了該法在預(yù)見性上存在的一些缺陷和法律漏洞。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)立法輔助系統(tǒng)如能應(yīng)用于法律起草和法律草案的審議過程,有可能事先發(fā)現(xiàn)一些立法漏洞,避免一個法律內(nèi)部各種規(guī)則之間以及新法律與現(xiàn)有法律制度之間的相互沖突。
三、法理學(xué)在人工智能法律系統(tǒng)研究中的作用
1.人工智能法律系統(tǒng)的法理學(xué)思想來源
關(guān)于人工智能法律系統(tǒng)之法理學(xué)思想來源的追蹤,不是對法理學(xué)與人工智能的聯(lián)系作面面俱到的考察,而旨在揭示法理學(xué)對人工智能法律系統(tǒng)的發(fā)展所產(chǎn)生的一些直接影響。
第一,法律形式主義為人工智能法律系統(tǒng)的產(chǎn)生奠定了理論基礎(chǔ)。18-19世紀(jì)的法律形式主義強(qiáng)調(diào)法律推理的形式方面,認(rèn)為將法律化成簡單的幾何公式是完全可能的。這種以J·奧斯汀為代表的英國分析法學(xué)的傳統(tǒng),主張“法律推理應(yīng)該依據(jù)客觀事實(shí)、明確的規(guī)則以及邏輯去解決一切為法律所要求的具體行為。假如法律能如此運(yùn)作,那么無論誰作裁決,法律推理都會導(dǎo)向同樣的裁決?!保ㄗⅲ海溃┦返傥摹·伯頓著:《法律和法律推理導(dǎo)論》,張志銘、解興權(quán)譯,中國政法大學(xué)出版社1998年9月版,第3頁。)換言之,機(jī)器只要遵守法律推理的邏輯,也可以得出和法官一樣的判決結(jié)果。在分析法學(xué)家看來,“所謂‘法治’就是要求結(jié)論必須是大前提與小前提邏輯必然結(jié)果?!保ㄗⅲ褐炀拔闹骶帲骸秾ξ鞣椒蓚鹘y(tǒng)的挑戰(zhàn)》,中國檢察出版社1996年2月版,第292頁。)如果法官違反三段論推理的邏輯,就會破壞法治。這種機(jī)械論的法律推理觀,反映了分析法學(xué)要求法官不以個人價(jià)值觀干擾法律推理活動的主張。但是,它同時(shí)具有忽視法官主觀能動性和法律推理靈活性的僵化的缺陷。所以,自由法學(xué)家比埃利希將法律形式主義的邏輯推理說稱為“自動售貨機(jī)”理論。然而,從人工智能就是為思維提供機(jī)械論解釋的意義上說,法律形式主義對法律推理所作的機(jī)械論解釋,恰恰為人工智能法律系統(tǒng)的開發(fā)提供了可能的前提。從人工智能法律系統(tǒng)研制的實(shí)際過程來看,在其起步階段,人工智能專家正是根據(jù)法律形式主義所提供的理論前提,首先選擇三段論演繹推理進(jìn)行模擬,由WalterG.Popp和BernhardSchlink在20世紀(jì)70年代初開發(fā)了JUDITH律師推理系統(tǒng)。在這個系統(tǒng)中,作為推理大小前提的法律和事實(shí)之間的邏輯關(guān)系,被計(jì)算機(jī)以“如果A和B,那么C”的方式加以描述,使機(jī)器法律推理第一次從理論變?yōu)楝F(xiàn)實(shí)。
第二,法律現(xiàn)實(shí)主義推動智能模擬深入到主體的思維結(jié)構(gòu)領(lǐng)域。法律形式主義忽視了推理主體的社會性。法官是生活在現(xiàn)實(shí)社會中的人,其所從事的法律活動不可能不受到其社會體驗(yàn)和思維結(jié)構(gòu)的影響。法官在實(shí)際的審判實(shí)踐中,并不是機(jī)械地遵循規(guī)則,特別是在遇到復(fù)雜案件時(shí),往往需要作出某種價(jià)值選擇。而一旦面對價(jià)值問題,法律形式主義的邏輯決定論便立刻陷入困境,顯出其僵化性的致命弱點(diǎn)。法律現(xiàn)實(shí)主義對其僵化性進(jìn)行了深刻的批判?;裟匪狗ü倜鞔_提出“法律的生命并不在于邏輯而在于經(jīng)驗(yàn)”(注:(美)博登海默著:《法理學(xué)——法哲學(xué)及其方法》,鄧正來、姬敬武譯,華夏出版社1987年12月版,第478頁。)的格言。這里所謂邏輯,就是指法律形式主義的三段論演繹邏輯;所謂經(jīng)驗(yàn),則包括一定的道德和政治理論、公共政策及直覺知識,甚至法官的偏見。法律現(xiàn)實(shí)主義對法官主觀能動性和法律推理靈活性的強(qiáng)調(diào),促使人工智能研究從模擬法律推理的外在邏輯形式進(jìn)一步轉(zhuǎn)向探求法官的內(nèi)在思維結(jié)構(gòu)。人們開始考慮,如果思維結(jié)構(gòu)對法官的推理活動具有定向作用,那么,人工智能法律系統(tǒng)若要達(dá)到法官水平,就應(yīng)該通過建立思維結(jié)構(gòu)模型來設(shè)計(jì)機(jī)器的運(yùn)行結(jié)構(gòu)。TAXMAN的設(shè)計(jì)就借鑒了這一思想,法律知識被計(jì)算機(jī)結(jié)構(gòu)語言以語義網(wǎng)絡(luò)的方式組成不同的規(guī)則系統(tǒng),解釋程序、協(xié)調(diào)程序、說明程序分別對網(wǎng)絡(luò)結(jié)構(gòu)中的輸入和輸出信息進(jìn)行動態(tài)結(jié)構(gòu)調(diào)整,從而適應(yīng)了知識整合的需要。大規(guī)模知識系統(tǒng)的KBS(KnowledgeBasedSystem)開發(fā)也注意了思維結(jié)構(gòu)的整合作用,許多具有內(nèi)在聯(lián)系的小規(guī)模KBS子系統(tǒng),在分別模擬法律推理要素功能(證成、法律查詢、法律解釋、法律適用、法律評價(jià)、理由闡述)的基礎(chǔ)上,又通過聯(lián)想程序被有機(jī)聯(lián)系起來,構(gòu)成了具有法律推理整體功能的概念模型。(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)
第三,“開放結(jié)構(gòu)”的法律概念打開了疑難案件法律推理模擬的思路。法律形式主義忽視了疑難案件的存在。疑難案件的特征表現(xiàn)為法律規(guī)則和案件之間不存在單一的邏輯對應(yīng)關(guān)系。有時(shí)候從一個法律規(guī)則可以推出幾種不同的結(jié)論,它們往往沒有明顯的對錯之分;有時(shí)一個案件面對著幾個相似的法律規(guī)則。在這些情況下,形式主義推理說都一籌莫展。但是,法律現(xiàn)實(shí)主義在批判法律形式主義時(shí)又走向另一個極端,它否認(rèn)具有普遍性的一般法律規(guī)則的存在,試圖用“行動中的法律”完全代替分析法學(xué)“本本中的法律”。這種矯枉過正的做法雖然是使法律推理擺脫機(jī)械論束縛所走出的必要一步,然而,法律如果真像現(xiàn)實(shí)主義法學(xué)所說的那樣僅僅存在于具體判決之中,法律推理如果可以不遵循任何標(biāo)準(zhǔn)或因人而異,那么,受到挑戰(zhàn)的就不僅是法律形式主義,而且還會殃及法治要求實(shí)現(xiàn)規(guī)則統(tǒng)治之根本原則,并動搖人工智能法律系統(tǒng)存在的基礎(chǔ)。哈特在法律形式主義和法律現(xiàn)實(shí)主義的爭論中采取了一種折中立場,他既承認(rèn)邏輯的局限性又強(qiáng)調(diào)其重要性;既拒斥法官完全按自己的預(yù)感來隨意判案的見解,又承認(rèn)直覺的存在。這種折中立場在哈特“開放結(jié)構(gòu)”的法律概念中得到了充分體現(xiàn)。法律概念既有“意義核心”又有“開放結(jié)構(gòu)”,邏輯推理可以幫助法官發(fā)現(xiàn)問題的陽面,而根據(jù)社會政策、價(jià)值和后果對規(guī)則進(jìn)行解釋則有助于發(fā)現(xiàn)問題的陰面。開放結(jié)構(gòu)的法律概念,使基于規(guī)則的法律推理模擬在受到概念封閉性的限制而對疑難案件無能為力時(shí),找到了新的立足點(diǎn)。在此基礎(chǔ)上,運(yùn)用開放結(jié)構(gòu)概念的疑難案件法律推理模型,通過邏輯程序工具和聯(lián)想技術(shù)而建立起來。Gardner博士就疑難案件提出兩種解決策略:一是將簡易問題從疑難問題中篩選出來,運(yùn)用基于規(guī)則的技術(shù)來解決;二是將疑難問題同“開放結(jié)構(gòu)”的法律概念聯(lián)系在一起,先用非范例知識如規(guī)則、控辯雙方的陳述、常識來獲得初步答案,再運(yùn)用范例來澄清案件、檢查答案的正確性。
第四,目的法學(xué)促進(jìn)了價(jià)值推理的人工智能研究。目的法學(xué)是指一種所謂直接實(shí)現(xiàn)目的之“后法治”理想。美國法學(xué)家諾內(nèi)特和塞爾茲尼克把法律分為三種類型。他們認(rèn)為,以法治為標(biāo)志的自治型法,過分強(qiáng)調(diào)手段或程序的正當(dāng)性,有把手段當(dāng)作目的的傾向。這說明法治社會并沒有反映人類關(guān)于美好社會的最高理想,因?yàn)閷?shí)質(zhì)正義不是經(jīng)過人們直接追求而實(shí)現(xiàn)的,而是通過追求形式正義而間接獲得的。因此他們提出以回應(yīng)型法取代自治型法的主張。在回應(yīng)型法中,“目的為評判既定的做法設(shè)立了標(biāo)準(zhǔn),從而也就開辟了變化的途徑。同時(shí),如果認(rèn)真地對待目的,它們就能控制行政自由裁量權(quán),從而減輕制度屈從的危險(xiǎn)。反之,缺少目的既是僵硬的根源,又是機(jī)會主義的根源?!保ㄗⅲ海溃┲Z內(nèi)特、塞爾茲尼克著:《轉(zhuǎn)變中的法律與社會》,張志銘譯,中國政法大學(xué)出版社1994年版,第60頁。)美國批判法學(xué)家昂格爾對形式主義法律推理和目的型法律推理的特點(diǎn)進(jìn)行了比較,他認(rèn)為,前者要求使用內(nèi)容明確、固定的規(guī)則,無視社會現(xiàn)實(shí)生活中不同價(jià)值觀念的沖突,不能適應(yīng)復(fù)雜情況和變化,追求形式正義;后者則要求放松對法律推理標(biāo)準(zhǔn)的嚴(yán)格限制,允許使用無固定內(nèi)容的抽象標(biāo)準(zhǔn),迫使人們在不同的價(jià)值觀念之間做出選擇,追求實(shí)質(zhì)正義。與此相應(yīng),佩雷爾曼提出了新修辭學(xué)(NewRhetoric)的法律理論。他認(rèn)為,形式邏輯只是根據(jù)演繹法或歸納法對問題加以說明或論證的技術(shù),屬于手段的邏輯;新修辭學(xué)要填補(bǔ)形式邏輯的不足,是關(guān)于目的的辯證邏輯,可以幫助法官論證其決定和選擇,因而是進(jìn)行價(jià)值判斷的邏輯。他認(rèn)為,在司法三段論思想支配下,法學(xué)的任務(wù)是將全部法律系統(tǒng)化并作為闡釋法律的大前提,“明確性、一致性和完備性”就成為對法律的三個要求。而新修辭學(xué)的基本思想是價(jià)值判斷的多元論,法官必須在某種價(jià)值判斷的指示下履行義務(wù),必須考慮哪些價(jià)值是“合理的、可接受的、社會上有效的公平的”。這些價(jià)值構(gòu)成了判決的正當(dāng)理由。(注:沈宗靈著:《現(xiàn)代西方法理學(xué)》,北京大學(xué)出版社1992年版,第443-446頁。)制造人工智能法律系統(tǒng)最終需要解決價(jià)值推理的模擬問題,否則,就難以實(shí)現(xiàn)為判決提供正當(dāng)理由的要求。為此,P.Wahlgren提出的與人工智能相關(guān)的5種知識表達(dá)途徑中,明確地包括了以道義為基礎(chǔ)的法律推理模型。(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)引入道義邏輯,或者說在機(jī)器中采用基于某種道義邏輯的推理程序,強(qiáng)調(diào)目的價(jià)值,也許是制造智能法律系統(tǒng)的關(guān)鍵。不過,即使把道義邏輯硬塞給計(jì)算機(jī),鋼鐵之軀的機(jī)器沒有生理需要,也很難產(chǎn)生價(jià)值觀念和主觀體驗(yàn),沒辦法解決主觀選擇的問題。在這個問題上,波斯納曾以法律家有七情六欲為由對法律家對法律的機(jī)械忠誠表示了強(qiáng)烈懷疑,并辯證地將其視為法律發(fā)展的動力之一。只有人才能夠平衡相互沖突的利益,能夠發(fā)現(xiàn)對人類生存和發(fā)展至關(guān)重要的價(jià)值。因此,關(guān)于價(jià)值推理的人工智能模擬究竟能取得什么成果,恐怕還是個未知數(shù)。
2.法理學(xué)對人工智能法律系統(tǒng)研制的理論指導(dǎo)作用
GoldandSusskind指出:“不爭的事實(shí)是,所有的專家系統(tǒng)必須適應(yīng)一些法理學(xué)理論,因?yàn)橐磺蟹蓪<蚁到y(tǒng)都需要提出關(guān)于法律和法律推理性質(zhì)的假設(shè)。從更嚴(yán)格的意義上說,一切專家系統(tǒng)都必須體現(xiàn)一種結(jié)構(gòu)理論和法律的個性,一種法律規(guī)范理論,一種描述法律科學(xué)的理論,一種法律推理理論”。(注:GoldandSusskind,ExpertSystemsinLaw:AJurisprudentialandFormalSpecificationApproach,pp.307-309.)人工智能法律系統(tǒng)的研究,不僅需要以法理學(xué)關(guān)于法律的一般理論為知識基礎(chǔ),還需要從法理學(xué)獲得關(guān)于法律推理的完整理論,如法律推理實(shí)踐和理論的發(fā)展歷史,法律推理的標(biāo)準(zhǔn)、主體、過程、方法等等。人工智能對法律推理的模擬,主要是對法理學(xué)關(guān)于法律推理的知識進(jìn)行人工智能方法的描述,建立數(shù)學(xué)模型并編制計(jì)算機(jī)應(yīng)用程序,從而在智能機(jī)器上再現(xiàn)人類法律推理功能的過程。在這個過程中,人工智能專家的主要任務(wù)是研究如何吸收法理學(xué)關(guān)于法律推理的研究成果,包括法理學(xué)關(guān)于人工智能法律系統(tǒng)的研究成果。
隨著人工智能法律系統(tǒng)研究從低級向高級目標(biāo)的推進(jìn),人們越來越意識到,對法律推理的微觀機(jī)制認(rèn)識不足已成為人工智能模擬的嚴(yán)重障礙。P.Wahlgren指出,“許多人工智能技術(shù)在法律領(lǐng)域的開發(fā)項(xiàng)目之所以失敗,就是因?yàn)樵S多潛在的法理學(xué)原則沒有在系統(tǒng)開發(fā)的開始階段被遵守或給予有效的注意?!薄胺ɡ韺W(xué)對法律推理和方法論問題的關(guān)注已經(jīng)有幾百年,而人工智能的誕生只是本世紀(jì)50年代中期的事情,這個事實(shí)是人工智能通過考察法理學(xué)知識來豐富自己的一個有效動機(jī)?!保ㄗⅲ篜.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)因此,研究法律推理自動化的目標(biāo),“一方面是用人工智能(通過把計(jì)算機(jī)的應(yīng)用與分析模型相結(jié)合)來支撐法律推理的可能性;另一方面是應(yīng)用法理學(xué)理論來解決作為法律推理支撐系統(tǒng)的以及一般的人工智能問題?!保ㄗⅲ篜.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)在前一方面,是人工智能法律系統(tǒng)充當(dāng)法律推理研究的思想實(shí)驗(yàn)手段以及輔助司法審判的問題。后一方面,則是法律推理的法律學(xué)研究成果直接為人工智能法律系統(tǒng)的研制所應(yīng)用的問題。例如,20世紀(jì)70年代法理學(xué)在真實(shí)和假設(shè)案例的推理和分析方面所取得的成果,已為幾種人工智能法律裝置借鑒而成為其設(shè)計(jì)工作的理論基礎(chǔ)。在運(yùn)用模糊或開放結(jié)構(gòu)概念的法律推理研究方面,以及在法庭辯論和法律解釋的形式化等問題上,法理學(xué)的研究成果也已為人工智能法律系統(tǒng)的研究所借鑒。
四、人工智能法律系統(tǒng)研究的難點(diǎn)
人工智能法律系統(tǒng)的研究盡管在很短的時(shí)間內(nèi)取得了許多令人振奮的成果,但它的發(fā)展也面臨著許多困難。這些困難構(gòu)成了研究工作需要進(jìn)一步努力奮斗的目標(biāo)。
第一,關(guān)于法律解釋的模擬。在法理學(xué)的諸多研究成果中,法律解釋的研究對人工智能法律系統(tǒng)的研制起著關(guān)鍵作用。法律知識表達(dá)的核心問題是法律解釋。法律規(guī)范在一個法律論點(diǎn)上的效力,是由法律家按忠實(shí)原意和適合當(dāng)時(shí)案件的原則通過法律解釋予以確認(rèn)的,其中包含著人類特有的價(jià)值和目的考慮,反映了法律家的知識表達(dá)具有主觀能動性。所以,德沃金將解釋過程看作是一種結(jié)合了法律知識、時(shí)代信息和思維方法而形成的,能夠應(yīng)變的思維策略。(注:Dworkin,TakingRightsSeriously,HarvardUniversityPressCambridge,Massachusetts1977.p.75.)目前的法律專家系統(tǒng)并未以知識表達(dá)為目的來解釋法律,而是將法律整齊地“碼放”在計(jì)算機(jī)記憶系統(tǒng)中僅供一般檢索之用。然而,在法律知識工程系統(tǒng)中,法律知識必須被解釋,以滿足自動推理對法律知識進(jìn)行重新建構(gòu)的需要。麥卡錫說:“在開發(fā)智能信息系統(tǒng)的過程中,最關(guān)鍵的任務(wù)既不是文件的重建也不是專家意見的重建,而是建立有關(guān)法律領(lǐng)域的概念模型?!保ㄗⅲ篗cCarty,Intelligentlegalinformationsystems:problemsandprospects,op.cit.supra,note25,p.126.)建立法律概念模型必須以法律家對某一法律概念的共識為基礎(chǔ),但不同的法律家對同一法律概念往往有不同的解釋策略。凱爾森甚至說:即使在國內(nèi)法領(lǐng)域也難以形成一個“能夠用來敘述一定法律共同體的實(shí)在法的基本概念”。(注:(奧)凱爾森著:《法與國家的一般理論》,沈宗靈譯,中國大百科全書出版社1996年版,第1頁。)盡管如此,法理學(xué)還是為法律概念模型的重建提供了一些方法。例如,德沃金認(rèn)為,法官在“解釋”階段,要通過推理論證,為自己在“前解釋”階段所確定的大多數(shù)法官對模糊法律規(guī)范的“一致看法”提供“一些總的理由”。獲取這些總的理由的過程分為兩個步驟:首先,從現(xiàn)存的明確法律制度中抽象出一般的法律原則,用自我建立的一般法律理論來證明這種法律原則是其中的一部分,證明現(xiàn)存的明確法律制度是正當(dāng)?shù)摹F浯?,再以法律原則為依據(jù)反向推出具體的法律結(jié)論,即用一般法律理論來證明某一法律原則存在的合理性,再用該法律原則來解釋某一法律概念。TAXMAN等系統(tǒng)裝置已吸收了這種方法,法律知識被計(jì)算機(jī)結(jié)構(gòu)語言以語義網(wǎng)絡(luò)的方式組成不同的規(guī)則系統(tǒng),解釋程序使計(jì)算機(jī)根據(jù)案件事實(shí)來執(zhí)行某條法律規(guī)則,并在新案件事實(shí)輸入時(shí)對法律規(guī)則作出新的解釋后才加以調(diào)用。不過,法律知識表達(dá)的進(jìn)展還依賴于法律解釋研究取得更多的突破。
第二,關(guān)于啟發(fā)式程序。目前的法律專家系統(tǒng)如果不能與啟發(fā)式程序接口,不能運(yùn)用判斷性知識進(jìn)行推理,只通過規(guī)則反饋來提供簡單解釋,就談不上真正的智能性。啟發(fā)式程序要解決智能機(jī)器如何模擬法律家推理的直覺性、經(jīng)驗(yàn)性以及推理結(jié)果的不確定性等問題,即人可以有效地處理錯誤的或不完全的數(shù)據(jù),在必要時(shí)作出猜測和假設(shè),從而使問題的解決具有靈活性。在這方面,Gardner的混合推理模型,EdwinaL.Rissland運(yùn)用聯(lián)想程序?qū)σ?guī)則和判例推理的結(jié)果作集合處理的思路,以及Massachusetts大學(xué)研制的CABARET(基于判例的推理工具),在將啟發(fā)式程序應(yīng)用于系統(tǒng)開發(fā)方面都進(jìn)行了有益的嘗試。但是,法律問題往往沒有唯一正確的答案,這是人工智能模擬法律推理的一個難題。選擇哪一個答案,往往取決于法律推理的目的標(biāo)準(zhǔn)和推理主體的立場和價(jià)值觀念。但智能機(jī)器沒有自己的目的、利益和立場。這似乎從某種程度上劃定了機(jī)器法律推理所能解決問題的范圍。
第三,關(guān)于法律自然語言理解。在設(shè)計(jì)基于規(guī)則的程序時(shí),設(shè)計(jì)者必須假定整套規(guī)則沒有意義不明和沖突,程序必須消滅這些問題而使規(guī)則呈現(xiàn)出更多的一致性。就是說,盡管人們對法律概念的含義可以爭論不休,但輸入機(jī)器的法律語言卻不能互相矛盾。機(jī)器語言具有很大的局限性,例如,LDS基于規(guī)則來模擬嚴(yán)格責(zé)任并計(jì)算實(shí)際損害時(shí),表現(xiàn)出的最大弱點(diǎn)就是不能使用不精確的自然語言進(jìn)行推理。然而,在實(shí)際的法律推理過程中,法律家對某個問題的任何一種回答都可根據(jù)上下文關(guān)系作多種解釋,而且辯論雙方總是尋求得出不同的結(jié)論。因此,智能法律專家系統(tǒng)的成功在很大程度上還依賴于自然語言理解研究工作的突破。牛津大學(xué)的一個程序組正在研究法律自然語言的理解問題,但是遇到了重重困難。原因是連法學(xué)家們自己目前也還沒有建立起一套大家一致同意的專業(yè)術(shù)語規(guī)范。所以EdwinaL.Rissland認(rèn)為,常識知識、意圖和信仰類知識的模擬化,以及自然語言理解的模擬問題,迄今為止可能是人工智能面臨的最困難的任務(wù)。對于語言模擬來說,像交際短語和短語概括的有限能力可能會在較窄的語境條件下取得成果,完全的功能模擬、一般“解決問題”能力的模擬則距離非常遙遠(yuǎn),而像書面上訴意見的理解則是永遠(yuǎn)的終極幻想。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)
五、人工智能法律系統(tǒng)的開發(fā)策略和應(yīng)用前景
我們能夠制造出一臺什么樣的機(jī)器,可以證明它是人工智能法律系統(tǒng)?從檢驗(yàn)標(biāo)準(zhǔn)上看,這主要是法律知識在機(jī)器中再現(xiàn)的判定問題。根據(jù)“圖靈試驗(yàn)”原理,我們可將該檢驗(yàn)標(biāo)準(zhǔn)概括如下:設(shè)兩間隔開的屋子,一間坐著一位法律家,另一間“坐著”一臺智能機(jī)器。一個人(也是法律家)向法律家和機(jī)器提出同樣的法律問題,如果提問者不能從二者的回答中區(qū)分出誰是法律家、誰是機(jī)器,就不能懷疑機(jī)器具有法律知識表達(dá)的能力。
依“圖靈試驗(yàn)”制定的智能法律系統(tǒng)檢驗(yàn)標(biāo)準(zhǔn),所看重的是功能。只要機(jī)器和法律家解決同樣法律問題時(shí)所表現(xiàn)出來的功能相同,就不再苛求哪個是鋼鐵結(jié)構(gòu)、哪個是血肉之軀。人工智能立足的基礎(chǔ),就是相同的功能可以通過不同的結(jié)構(gòu)來實(shí)現(xiàn)之功能模擬理論。
從功能模擬的觀點(diǎn)來確定人工智能法律系統(tǒng)的研究與開發(fā)策略,可作以下考慮:
第一,擴(kuò)大人工智能法律系統(tǒng)的研發(fā)主體?,F(xiàn)有人工法律系統(tǒng)的幼稚,暴露了僅僅依靠計(jì)算機(jī)和知識工程專家從事系統(tǒng)研發(fā)工作的局限性。因此,應(yīng)該確立以法律家、邏輯學(xué)家和計(jì)算機(jī)專家三結(jié)合的研發(fā)群體。在系統(tǒng)研發(fā)初期,可組成由法學(xué)家、邏輯與認(rèn)知專家、計(jì)算機(jī)和知識工程專家為主體的課題組,制定系統(tǒng)研發(fā)的整體戰(zhàn)略和分階段實(shí)施的研發(fā)規(guī)劃。在系統(tǒng)研發(fā)中期,應(yīng)通過網(wǎng)絡(luò)等手段充分吸收初級產(chǎn)品用戶(律師、檢察官、法官)的意見,使研發(fā)工作在理論研究與實(shí)際應(yīng)用之間形成反饋,將開發(fā)精英與廣大用戶的智慧結(jié)合起來,互相啟發(fā)、群策群力,推動系統(tǒng)迅速升級。
第二,確定研究與應(yīng)用相結(jié)合、以應(yīng)用為主導(dǎo)的研發(fā)策略。目前國外人工智能法律系統(tǒng)的研究大多停留在實(shí)驗(yàn)室領(lǐng)域,還沒有在司法實(shí)踐中加以應(yīng)用。但是,任何智能系統(tǒng)包括相對簡單的軟件系統(tǒng),如果不經(jīng)過用戶的長期使用和反饋,是永遠(yuǎn)也不可能走向成熟的。從我國的實(shí)際情況看,如果不能將初期研究成果盡快地轉(zhuǎn)化為產(chǎn)品,我們也難以為后續(xù)研究工作提供雄厚的資金支持。因此,人工智能法律系統(tǒng)的研究必須走產(chǎn)研結(jié)合的道路,堅(jiān)持以應(yīng)用開路,使智能法律系統(tǒng)盡快走出實(shí)驗(yàn)室,同時(shí)以研究為先導(dǎo),促進(jìn)不斷更新升級。
第三,系統(tǒng)研發(fā)目標(biāo)與初級產(chǎn)品功能定位。人工智能法律系統(tǒng)的研發(fā)目標(biāo)是制造出能夠滿足多用戶(律師、檢察官、法官、立法者、法學(xué)家)多種需要的機(jī)型。初級產(chǎn)品的定位應(yīng)考慮到,人的推理功能特別是價(jià)值推理的功能遠(yuǎn)遠(yuǎn)超過機(jī)器,但人的記憶功能、檢索速度和準(zhǔn)確性又遠(yuǎn)不如機(jī)器。同時(shí)還應(yīng)該考慮到,我國目前有12萬律師,23萬檢察官和21萬法官,每年1.2萬法學(xué)院本科畢業(yè)生,他們對法律知識的獲取、表達(dá)和應(yīng)用能力參差不齊。因此,初級產(chǎn)品的標(biāo)準(zhǔn)可適當(dāng)降低,先研制推理功能薄弱、檢索功能強(qiáng)大的法律專家系統(tǒng)。可與計(jì)算機(jī)廠商合作生產(chǎn)具有強(qiáng)大數(shù)據(jù)庫功能的硬件,并確保最新法律、法規(guī)、司法解釋和判例的網(wǎng)上及時(shí)更新;同時(shí)編制以案件為引導(dǎo)的高速檢索軟件。系統(tǒng)開發(fā)的先期目標(biāo)應(yīng)確定為:(1)替律師起草僅供參考的書和辯護(hù)詞;(2)替法官起草僅供參考的判決書;(3)為法學(xué)院學(xué)生提供模擬法庭審判的通用系統(tǒng)軟件,以輔助學(xué)生在、辯護(hù)和審判等訴訟的不同階段鞏固所學(xué)知識、獲得審判經(jīng)驗(yàn)。上述軟件旨在提供一個初級平臺,先解決有無和急需,再不斷收集用戶反饋意見,逐步改進(jìn)完善。
第四,實(shí)驗(yàn)室研發(fā)應(yīng)確定較高的起點(diǎn)或跟蹤戰(zhàn)略。國外以知識工程為主要技術(shù)手段的人工智能法律系統(tǒng)開發(fā)已經(jīng)歷了如下發(fā)展階段:(1)主要適用于簡單案件的規(guī)則推理;(2)運(yùn)用開放結(jié)構(gòu)概念的推理;(3)運(yùn)用判例和假設(shè)的推理;(4)運(yùn)用規(guī)則和判例的混合推理。我們?nèi)绱_定以簡單案件的規(guī)則推理為初級市場產(chǎn)品,那么,實(shí)驗(yàn)室中第二代產(chǎn)品開發(fā)就應(yīng)瞄準(zhǔn)運(yùn)用開放結(jié)構(gòu)概念的推理。同時(shí),跟蹤運(yùn)用假設(shè)的推理及混合推理,吸收國外先進(jìn)的KBS和HYPO的設(shè)計(jì)思想,將功能子系統(tǒng)開發(fā)與聯(lián)想式控制系統(tǒng)結(jié)合。HYPO判例法推理智能裝置具有如下功能:(1)評價(jià)相關(guān)判例;(2)判定何方使用判例更加貼切;(3)分析并區(qū)分判例;(4)建立假設(shè)并用假設(shè)來推理;(5)為一種主張引用各種類型的反例;(6)建立判例的引證概要。HYPO以商業(yè)秘密法的判例推理為模擬對象,假設(shè)了完全自動化的法律推理過程中全部要素被建立起來的途徑。值得注意的是,HYPO忽略了許多要素的存在,如商業(yè)秘密法背后的政策考慮,法律概念應(yīng)用于實(shí)際情況時(shí)固有的模糊性,信息是否已被公開,被告是否使用了對方設(shè)計(jì)的產(chǎn)品,是否簽署了讓與協(xié)議,等等。一個系統(tǒng)設(shè)計(jì)的要素列表無論多長,好律師也總能再多想出一些。同樣,律師對案件的分析,不可能僅限于商業(yè)秘密法判例,還可能援引侵權(quán)法或?qū)@ǖ呐欣?,這決定了緣由的多種可能性。Ashley還討論了判例法推理模擬的其他困難:判例并不是概念的肯定的或否定的樣本,因此,要通過要素等簡單的法律術(shù)語使模糊的法律規(guī)則得到澄清十分困難,法律原則和類推推理之間的關(guān)系還不能以令人滿意的方式加以描述。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)這說明,即使具有較高起點(diǎn)的實(shí)驗(yàn)室基礎(chǔ)研究,也不宜確定過高的目標(biāo)。因?yàn)?,智能法律系統(tǒng)的研究不能脫離人工智能的整體發(fā)展水平。
第五,人-機(jī)系統(tǒng)解決方案。人和機(jī)器在解決法律問題時(shí)各有所長。人的優(yōu)點(diǎn)是能作價(jià)值推理,使法律問題的解決適應(yīng)社會的變化發(fā)展,從而具有靈活性。機(jī)器的長處是記憶和檢索功能強(qiáng),可以使法律問題的解決具有一貫性。人-機(jī)系統(tǒng)解決方案立足于人與機(jī)器的功能互補(bǔ),目的是解放人的腦力勞動,服務(wù)于國家的法治建設(shè)。該方案的實(shí)施可以分為兩個階段:第一階段以人為主,機(jī)器為人收集信息并作初步分析,提供決策參考。律師受理案件后,可以先用機(jī)器處理大批數(shù)據(jù),并參考機(jī)器的和辯護(hù)方案,再做更加高級的推理論證工作。法官接觸一個新案件,或新法官剛接觸審判工作,也可以先看看“機(jī)器法官”的判決建議或者審判思路,作為參考。法院的監(jiān)督部門可參照機(jī)器法官的判決,對法官的審判活動進(jìn)行某種監(jiān)督,如二者的判決結(jié)果差別太大,可以審查一下法官的判決理由。這也許可以在一定程度上制約司法腐敗。在人-機(jī)系統(tǒng)開發(fā)的第二階段,會有越來越多的簡單案件的判決與電腦推理結(jié)果完全相同,因此,某些簡單案件可以機(jī)器為主進(jìn)行審判,例如,美國小額法庭的一些案件,我國法庭可用簡易程序來審理的一些案件。法官可以作為“產(chǎn)品檢驗(yàn)員”監(jiān)督和修訂機(jī)器的判決結(jié)果。這樣,法官的判案效率將大大提高,法官隊(duì)伍也可借此“消腫”,有可能大幅度提高法官薪水,吸引高素質(zhì)法律人才進(jìn)入法官隊(duì)伍。
1.2基于人工智能知識體系的教學(xué)案例庫建設(shè)根據(jù)所確定的教學(xué)內(nèi)容、知識重點(diǎn)和知識難點(diǎn),從國內(nèi)外經(jīng)典教材、科研項(xiàng)目、研發(fā)設(shè)計(jì)、生產(chǎn)建設(shè)以及國內(nèi)外人工智能網(wǎng)站等多種途徑,收集案例素材,加以整理,撰寫各知識要點(diǎn)的教學(xué)案例及其內(nèi)容。表1給出基于人工智能知識體系的教學(xué)案例示例。
2人工智能課程教學(xué)案例的詳細(xì)設(shè)計(jì)
在教學(xué)案例具體設(shè)計(jì)時(shí)應(yīng)包括章節(jié)、知識重點(diǎn)、知識難點(diǎn)、案例名稱、案例內(nèi)容、案例分析過程、案例教學(xué)手段、思考/討論內(nèi)容等案例規(guī)范,分別從以下單一案例、一題多解案例和綜合應(yīng)用案例3種情況進(jìn)行討論。
2.1單一案例設(shè)計(jì)以人工智能課程中神經(jīng)網(wǎng)絡(luò)課堂教學(xué)內(nèi)容為例,介紹基于知識點(diǎn)的單一案例的設(shè)計(jì)。神經(jīng)網(wǎng)絡(luò)在模式識別、圖像處理、組合優(yōu)化、自動控制、信息處理和機(jī)器人學(xué)等領(lǐng)域具有廣泛的應(yīng)用,是人工智能課程的主要內(nèi)容之一。教學(xué)內(nèi)容主要包括介紹人工神經(jīng)網(wǎng)絡(luò)的由來、特性、結(jié)構(gòu)、模型和算法,以及神經(jīng)網(wǎng)絡(luò)的表示和推理。這些內(nèi)容是神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識。其重點(diǎn)在于人工神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)、模型和算法。難點(diǎn)是人工神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和算法。從教學(xué)要求上,通過對該章節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生掌握人工神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)、模型和算法,了解人工神經(jīng)網(wǎng)絡(luò)的由來和特性,一般性地了解神經(jīng)網(wǎng)絡(luò)的表示和推理方法。采用課件PPT和演示手段,由簡單到復(fù)雜,在學(xué)生掌握人工神經(jīng)網(wǎng)絡(luò)的基本原理和方法之后,再講解反向傳播BP算法,然后運(yùn)用“手寫體如何識別”案例,引導(dǎo)學(xué)生學(xué)習(xí)理解人工神經(jīng)網(wǎng)絡(luò)的核心思想及其應(yīng)用方法。從國外教材中整理和設(shè)計(jì)該案例,同時(shí)應(yīng)包括以下規(guī)范內(nèi)容。章節(jié):神經(jīng)網(wǎng)絡(luò)。知識重點(diǎn):神經(jīng)網(wǎng)絡(luò)。知識難點(diǎn):人工神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)、表示、學(xué)習(xí)算法和推理。案例名稱:手寫體如何識別。案例內(nèi)容:用訓(xùn)練樣本集訓(xùn)練一個神經(jīng)網(wǎng)絡(luò)使其推廣到先前訓(xùn)練所得結(jié)果,正確分類先前未見過的數(shù)據(jù)。案例分析過程:①訓(xùn)練數(shù)字識別神經(jīng)網(wǎng)絡(luò)的樣本位圖;②反向傳播BP算法;③神經(jīng)網(wǎng)絡(luò)的表示;④使用誤差反向傳播算法訓(xùn)練的神經(jīng)網(wǎng)絡(luò)的泛化能力;⑤一個神經(jīng)網(wǎng)絡(luò)訓(xùn)練完畢后,將網(wǎng)絡(luò)中的權(quán)值保存起來供實(shí)際應(yīng)用。案例教學(xué)手段:手寫體識別的神經(jīng)網(wǎng)絡(luò)演示。思考/討論內(nèi)容:①訓(xùn)練改進(jìn)與權(quán)值調(diào)整改進(jìn);②過學(xué)習(xí)/過擬合現(xiàn)象,即在一個數(shù)據(jù)集上訓(xùn)練時(shí)間過長,導(dǎo)致網(wǎng)絡(luò)過擬合于訓(xùn)練數(shù)據(jù),對未出現(xiàn)過的新數(shù)據(jù)沒有推廣性。
2.2一題多解案例設(shè)計(jì)一題多解案例有助于學(xué)生把相關(guān)知識點(diǎn)聯(lián)系起來,形成相互關(guān)聯(lián)的知識網(wǎng)絡(luò)。以人工智能課程中知識及其表示教學(xué)內(nèi)容為例,介紹一題多解案例的設(shè)計(jì)。知識及其表示是人工智能課程三大內(nèi)容(知識表示、知識推理、知識應(yīng)用)之一。教學(xué)內(nèi)容主要包括知識表示的各種方法。其重點(diǎn)在于狀態(tài)空間、問題歸約、謂詞邏輯、語義網(wǎng)絡(luò)等知識表示方法。難點(diǎn)是知識表示方法的區(qū)別及其應(yīng)用。從教學(xué)要求上,通過對該章節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生掌握利用狀態(tài)空間法、問題歸約法、謂詞演算法、語義網(wǎng)絡(luò)法來描述和解決應(yīng)用問題,重點(diǎn)掌握幾種主要知識表示方法之間的差別,并對如何選擇知識表示方法有一般性的了解。通過講解和討論“猴子和香蕉問題”案例,來表示抽象概念。該案例從國內(nèi)外教材中進(jìn)行整理和設(shè)計(jì),同時(shí)包括以下規(guī)范內(nèi)容。章節(jié):知識及其表示。知識重點(diǎn):狀態(tài)空間法、問題歸約法、謂詞邏輯法、語義網(wǎng)絡(luò)法等。知識難點(diǎn):知識表示方法的區(qū)別及其應(yīng)用。案例名稱:分別用狀態(tài)空間表示法與謂詞邏輯法表示猴子和香蕉問題。案例內(nèi)容:房間內(nèi)有一只機(jī)器猴、一個箱子和一束香蕉。香蕉掛在天花板下方,但猴子的高度不足以碰到它。猴子如何摘到香蕉?如何采用多種知識表示方法表示和求解該問題?案例分析過程:①狀態(tài)空間法的解題過程。用n元表列表示該問題的狀態(tài);定義問題的操作算符;定義初始狀態(tài)變換為目標(biāo)狀態(tài)的操作序列;畫出該問題的狀態(tài)空間圖。②謂詞邏輯法的解題過程。定義問題的常量;定義問題的謂詞;根據(jù)問題描述用謂詞公式表示問題的初始狀態(tài)、中間狀態(tài)和目標(biāo)狀態(tài)。案例教學(xué)手段:猴子和香蕉問題的演示。思考/討論內(nèi)容:①選擇知識表示方法時(shí),應(yīng)考慮哪些主要因素?②如何綜合運(yùn)用多種知識表示方法獲得最有效的問題解決方案?
2.3綜合應(yīng)用案例設(shè)計(jì)與單一案例、一題多解案例相比,綜合應(yīng)用案例能更加有效地啟發(fā)學(xué)生全方位地思考和探索問題的解決方法。以機(jī)器人行動規(guī)劃模擬為例,介紹人工智能綜合應(yīng)用案例的設(shè)計(jì),該案例包括以下規(guī)范內(nèi)容。章節(jié):人工智能綜合應(yīng)用。知識重點(diǎn):人工智能的研究方向和應(yīng)用領(lǐng)域。知識難點(diǎn):人工智能的技術(shù)集成。案例名稱:機(jī)器人行動規(guī)劃模擬。案例內(nèi)容:綜合應(yīng)用行為規(guī)劃、知識表示方法、機(jī)器人學(xué)、神經(jīng)網(wǎng)絡(luò)、人工智能語言等多種人工智能技術(shù)與方法,對機(jī)器人行動規(guī)劃問題進(jìn)行描述和可視化。案例分析過程:①機(jī)器人行為規(guī)劃問題求解。采用狀態(tài)歸約法與分層規(guī)劃技術(shù),將機(jī)器人須完成的總?cè)蝿?wù)分解為若干依序排列的子任務(wù);依據(jù)任務(wù)進(jìn)程,確定若干關(guān)鍵性的中間狀態(tài),將狀態(tài)對應(yīng)為進(jìn)程子規(guī)劃的目標(biāo);確定規(guī)劃的執(zhí)行與操作控制,以及機(jī)器人過程控制與環(huán)境約束。②基于謂詞邏輯表示的機(jī)器人行為規(guī)劃設(shè)計(jì)。定義表達(dá)狀態(tài)的謂詞邏輯;用謂詞邏輯描述問題的初始狀態(tài)、問題的目標(biāo)狀態(tài)以及機(jī)器人行動規(guī)劃過程的中間狀態(tài);定義操作的約束條件和行為動作。③機(jī)器人控制系統(tǒng)。定義機(jī)器人平臺的控制體系結(jié)構(gòu),包括反應(yīng)式控制、包容結(jié)構(gòu)以及其他控制系統(tǒng)等。④基于神經(jīng)網(wǎng)絡(luò)的模式識別。采用神經(jīng)網(wǎng)絡(luò)方法以及BP算法對桌面茶壺、杯子等物體進(jìn)行識別,提取物體圖形特征。⑤機(jī)器人程序設(shè)計(jì)語言。運(yùn)用人工智能語言實(shí)現(xiàn)機(jī)器人行動規(guī)劃行為的可視化。案例教學(xué)手段:機(jī)器人行動規(guī)劃的模擬演示。思考/討論內(nèi)容:人工智能將會怎樣發(fā)展?應(yīng)該在哪些方面進(jìn)一步開展研究?
3案例教學(xué)環(huán)節(jié)和過程的具體實(shí)施細(xì)節(jié)
人工智能案例教學(xué)的實(shí)施面向筆者所在學(xué)院軟件工程專業(yè)三年級本科生展開。具體實(shí)施細(xì)節(jié)如下。(1)教學(xué)內(nèi)容的先進(jìn)性、實(shí)用性和前沿性。引進(jìn)和整合國外著名人工智能教材內(nèi)容,保證課程內(nèi)容具有先進(jìn)性。同時(shí)將前沿人工智能的研究成果與技術(shù)有機(jī)地融入課程案例教學(xué)之中。(2)案例教學(xué)的創(chuàng)新教學(xué)模式。在教師的引導(dǎo)下,將案例中涉及的人工智能內(nèi)容推廣到對人工智能的一般性認(rèn)識。案例的教學(xué)過程,成為認(rèn)識人工智能、初步運(yùn)用人工智能的理論與方法分析和解決實(shí)際應(yīng)用問題的過程,使學(xué)生具備運(yùn)用人工智能知識解決實(shí)際問題的意識和初步能力。在課程教學(xué)中,打破國內(nèi)常規(guī)教學(xué)方式,建立和實(shí)施開放式案例教學(xué)模式。采用動畫課件、錄像教學(xué)、實(shí)物演示、網(wǎng)絡(luò)教學(xué)等多種多媒體教學(xué)手段,以及集中講授與專題討論相結(jié)合的教學(xué)方式將理論、方法、技術(shù)、算法以及實(shí)現(xiàn)有機(jī)結(jié)合,感性認(rèn)識與理性認(rèn)識相結(jié)合,理論與實(shí)際相結(jié)合,極大地激發(fā)學(xué)生自主和創(chuàng)新性學(xué)習(xí)的熱情。(3)“課堂教學(xué)—實(shí)踐活動—現(xiàn)實(shí)應(yīng)用”的有機(jī)融合。在案例教學(xué)過程中,從傳統(tǒng)教學(xué)觀以學(xué)會為中心轉(zhuǎn)化為創(chuàng)新應(yīng)用型教學(xué)觀以創(chuàng)新為中心,以及從傳統(tǒng)教學(xué)的以課堂教學(xué)為中心轉(zhuǎn)化為以課堂教學(xué)與實(shí)踐活動并重為中心,構(gòu)造具體問題場景以及設(shè)計(jì)教學(xué)案例在情境中的現(xiàn)實(shí)應(yīng)用,加深學(xué)生對教學(xué)內(nèi)容的理解,同時(shí)提高學(xué)生的思考能力和實(shí)際綜合應(yīng)用能力。
也正因?yàn)槿绱耍斯ぶ悄馨l(fā)展進(jìn)程中所面臨的挑戰(zhàn)才不僅僅局限于技術(shù)或產(chǎn)業(yè)領(lǐng)域,而更多體現(xiàn)在經(jīng)濟(jì)、社會、政治領(lǐng)域的公共政策選擇上。首先,普遍建立在科層制基礎(chǔ)上的公共事務(wù)治理結(jié)構(gòu),是否能夠適應(yīng)技術(shù)發(fā)展和應(yīng)用過程中所大規(guī)模激發(fā)的不確定性和不可預(yù)知性?再者,長久以來圍繞人類行為的規(guī)制制度,是否同樣能夠適應(yīng)以數(shù)據(jù)、算法為主體的應(yīng)用環(huán)境?最后,如何構(gòu)建新的治理體系和治理工具來應(yīng)對伴隨人工智能發(fā)展而興起的新的經(jīng)濟(jì)、社會、政治問題?
應(yīng)對上述挑戰(zhàn)并不完全取決于技術(shù)發(fā)展或商業(yè)創(chuàng)新本身,而更多依賴于我們的公共政策選擇。本文試圖在分析人工智能發(fā)展邏輯及其所引發(fā)的風(fēng)險(xiǎn)挑戰(zhàn)的基礎(chǔ)上,對人工智能時(shí)代的公共政策選擇做出分析,并討論未來改革的可能路徑,這也就構(gòu)成了人工智能治理的三個基本問題。具體而言,人工智能本身成為治理對象,其發(fā)展與應(yīng)用構(gòu)成了治理挑戰(zhàn),而在此基礎(chǔ)上如何做出公共政策選擇便是未來治理變革的方向。
全文共分為四個部分:第一部分將探討人工智能的概念及特征,并進(jìn)而對其發(fā)展邏輯進(jìn)行闡述。作為一項(xiàng)顛覆性技術(shù)創(chuàng)新,其本身的技術(shù)門檻對決策者而言構(gòu)成了挑戰(zhàn),梳理并捋清人工智能的本質(zhì)內(nèi)涵因而成為制定相關(guān)公共政策的前提;第二部分將著重分析人工智能時(shí)代崛起所帶來的治理挑戰(zhàn),主要包括三個方面,即傳統(tǒng)科層治理結(jié)構(gòu)應(yīng)對人工智能新的生產(chǎn)模式的滯后性、建基于行為因果關(guān)系之上的傳統(tǒng)治理邏輯應(yīng)對人工智能新主體的不適用性,以及人工智能發(fā)展所引發(fā)的新議題的治理空白;面對上述挑戰(zhàn),各國都出臺了相關(guān)政策,本文第三部分對此進(jìn)行了綜述性對比分析,并指出了其進(jìn)步意義所在。需要指出的是,盡管各國的政策目標(biāo)都試圖追求人工智能發(fā)展與監(jiān)管的二維平衡,但由于缺乏對人工智能內(nèi)涵及其發(fā)展邏輯的完整認(rèn)識,當(dāng)前的公共政策選擇有失綜合性;本文第四部分將提出新的治理思路以及公共政策選擇的其他可能路徑,以推動圍繞人工智能治理的相關(guān)公共政策議題的深入討論。
一、人工智能的概念及技術(shù)發(fā)展邏輯:算法與數(shù)據(jù)
伴隨著人工智能技術(shù)的快速發(fā)展,尤其是其近年來在棋類對弈、自動駕駛、人臉識別等領(lǐng)域的廣泛應(yīng)用,圍繞人工智能所可能引發(fā)的社會變革產(chǎn)生了激烈爭論。在一方面,以霍金[2]、馬斯克[3]、比爾-蓋茨[4]、赫拉利[5]為代表的諸多人士呼吁加強(qiáng)監(jiān)管,警惕“人工智能成為人類文明史的終結(jié)”;在另一方面,包括奧巴馬[6]在內(nèi)的政治家、學(xué)者又認(rèn)為應(yīng)該放松監(jiān)管,充分釋放人工智能的技術(shù)潛力以造福社會。未來發(fā)展的不確定性固然是引發(fā)當(dāng)前爭論的重要原因之一,但圍繞“人工智能”概念內(nèi)涵理解的不同,以及對其發(fā)展邏輯認(rèn)識的不清晰,可能也同樣嚴(yán)重地加劇了人們的分歧。正因?yàn)榇?,廓清人工智能的概念?nèi)涵和發(fā)展邏輯不僅是回應(yīng)爭論的需要,也是進(jìn)一步提出公共政策建議的前提。
就相關(guān)研究領(lǐng)域而言,人們對于“人工智能”這一概念的定義并未形成普遍共識。計(jì)算機(jī)領(lǐng)域的先驅(qū)阿蘭-圖靈曾在《計(jì)算機(jī)器與智能》一文中提出,重要的不是機(jī)器模仿人類思維過程的能力,而是機(jī)器重復(fù)人類思維外在表現(xiàn)行為的能力。[7]正是由此理解出發(fā),著名的“圖靈測試”方案被提出。但如同斯坦福大學(xué)計(jì)算機(jī)系教授約翰·麥卡錫所指出的,“圖靈測試”僅僅只是“人工智能”概念的一部分,不模仿人類但同時(shí)也能完成相關(guān)行為的機(jī)器同樣應(yīng)被視為“智能”的。[8]事實(shí)上,約翰·麥卡錫正是現(xiàn)代人工智能概念的提出者。在他看來,“智能”關(guān)乎完成某種目標(biāo)的行為“機(jī)制”,而機(jī)器既可以通過模仿人來實(shí)現(xiàn)行為機(jī)制,也可以自由地使用任何辦法來創(chuàng)造行為機(jī)制。[9]由此,我們便得到了人工智能領(lǐng)域另一個非常重要的概念——“機(jī)器學(xué)習(xí)”。
人工智能研究的目標(biāo)是使機(jī)器達(dá)到人類級別的智能能力,而其中最重要的便是學(xué)習(xí)能力。[10]因此,盡管“機(jī)器學(xué)習(xí)”是“人工智能”的子域,但很多時(shí)候我們都將這兩個概念等同起來。[11]就實(shí)現(xiàn)過程而言,機(jī)器學(xué)習(xí)是指利用某些算法指導(dǎo)計(jì)算機(jī)利用已知數(shù)據(jù)得出適當(dāng)模型,并利用此模型對新的情境給出判斷,從而完成行為機(jī)制的過程。此處需要強(qiáng)調(diào)一下機(jī)器學(xué)習(xí)算法與傳統(tǒng)算法的差異。算法本質(zhì)上就是一系列指令,告訴計(jì)算機(jī)該做什么。對于傳統(tǒng)算法而言,其往往事無巨細(xì)地規(guī)定好了機(jī)器在既定條件下的既定動作;機(jī)器學(xué)習(xí)算法卻是通過對已有數(shù)據(jù)的“學(xué)習(xí)”,使機(jī)器能夠在與歷史數(shù)據(jù)不同的新情境下做出判斷。以機(jī)器人行走的實(shí)現(xiàn)為例,傳統(tǒng)算法下,程序員要仔細(xì)規(guī)定好機(jī)器人在既定環(huán)境下每一個動作的實(shí)現(xiàn)流程;而機(jī)器學(xué)習(xí)算法下,程序員要做的則是使計(jì)算機(jī)分析并模擬人類的行走動作,以使其即使在完全陌生的環(huán)境中也能實(shí)現(xiàn)行走。
由此,我們可以對“人工智能”設(shè)定一個“工作定義”以方便進(jìn)一步的討論:人工智能是建立在現(xiàn)代算法基礎(chǔ)上,以歷史數(shù)據(jù)為支撐,而形成的具有感知、推理、學(xué)習(xí)、決策等思維活動并能夠按照一定目標(biāo)完成相應(yīng)行為的計(jì)算系統(tǒng)。這一概念盡管可能仍不完善,但它突出了人工智能技術(shù)發(fā)展和應(yīng)用的兩大基石——算法與數(shù)據(jù),有助于討論人工智能的治理問題。
首先,算法即是規(guī)則,它不僅確立了機(jī)器所試圖實(shí)現(xiàn)的目標(biāo),同時(shí)也指出了實(shí)現(xiàn)目標(biāo)的路徑與方法。就人工智能當(dāng)前的技術(shù)發(fā)展史而言,算法主要可被劃分為五個類別:符號學(xué)派、聯(lián)接學(xué)派、進(jìn)化學(xué)派、類推學(xué)派和貝葉斯學(xué)派。[12]每個學(xué)派都遵循不同的邏輯、以不同的理念實(shí)現(xiàn)了人工智能(也即“機(jī)器學(xué)習(xí)”)的過程。舉例而言,“符號學(xué)派”將所有的信息處理簡化為對符號的操縱,由此學(xué)習(xí)過程被簡化(抽象)為基于數(shù)據(jù)和假設(shè)的規(guī)則歸納過程。在數(shù)據(jù)(即歷史事實(shí))和已有知識(即預(yù)先設(shè)定的條件)的基礎(chǔ)上,符號學(xué)派通過“提出假設(shè)-數(shù)據(jù)驗(yàn)證-進(jìn)一步提出新假設(shè)-歸納新規(guī)則”的過程來訓(xùn)練機(jī)器的學(xué)習(xí)能力,并由此實(shí)現(xiàn)在新環(huán)境下的決策判斷。
從對“符號學(xué)派”的描述中可以發(fā)現(xiàn),機(jī)器學(xué)習(xí)模型成功的關(guān)鍵不僅是算法,還有數(shù)據(jù)。數(shù)據(jù)的缺失和預(yù)設(shè)條件的不合理將直接影響機(jī)器學(xué)習(xí)的輸出(就符號學(xué)派而言,即決策規(guī)則的歸納)。最明顯體現(xiàn)這一問題的例子便是羅素的“歸納主義者火雞”問題:火雞在觀察10天(數(shù)據(jù)集不完整)之后得出結(jié)論(代表預(yù)設(shè)條件不合理,超過10個確認(rèn)數(shù)據(jù)即接受規(guī)則),主人會在每天早上9點(diǎn)給它喂食;但接下來是平安夜的早餐,主人沒有喂它而是宰了它。
所有算法類型盡管理念不同,但模型成功的關(guān)鍵都聚焦于“算法”和“數(shù)據(jù)”。事實(shí)上,如果跳出具體學(xué)派的思維束縛,每種機(jī)器學(xué)習(xí)算法都可被概括為“表示方法、評估、優(yōu)化”這三個部分。[13]盡管機(jī)器可以不斷的自我優(yōu)化以提升學(xué)習(xí)能力,且原則上可以學(xué)習(xí)任何東西,但評估的方法和原則(算法)以及用以評估的數(shù)據(jù)(數(shù)據(jù))都是人為決定的——而這也正是人工智能治理的關(guān)鍵所在。算法與數(shù)據(jù)不僅是人工智能發(fā)展邏輯的基石,其同樣是治理的對象和關(guān)鍵。
總而言之,圍繞“人工智能是否會取代人類”的爭論事實(shí)上并無太大意義,更重要的反而是在廓清人工智能的內(nèi)涵并理解其發(fā)展邏輯之后,回答“治理什么”和“如何治理”的問題。就此而言,明確治理對象為算法和數(shù)據(jù)無疑是重要的一步。但接下來的重要問題仍然在于,人工智能時(shí)代的崛起所帶來的治理挑戰(zhàn)究竟是什么?當(dāng)前的制度設(shè)計(jì)是否能夠?qū)ζ渥龀鲇行?yīng)對?如果答案是否定的,我們又該如何重構(gòu)治理體系以迎接人工智能時(shí)代的崛起?本文余下部分將對此做進(jìn)一步的闡述。
二、人工智能時(shí)代崛起的治理挑戰(zhàn)
不同于其他顛覆性技術(shù),人工智能的發(fā)展并不局限于某一特定產(chǎn)業(yè),而是能夠支撐所有產(chǎn)業(yè)變革的通用型技術(shù)。也正因?yàn)榇耍渚哂袕V泛的社會溢出效應(yīng),在政治、經(jīng)濟(jì)、社會等各個領(lǐng)域都會帶來深刻變革,并將同時(shí)引發(fā)治理方面的挑戰(zhàn)。具體而言,挑戰(zhàn)主要體現(xiàn)在以下三個方面。
首先,治理結(jié)構(gòu)的僵化性,即傳統(tǒng)的科層制治理結(jié)構(gòu)可能難以應(yīng)對人工智能快速發(fā)展而形成的開放性和不確定性。之所以需要對人工智能加以監(jiān)管,原因在于其可能成為公共危險(xiǎn)的源頭,例如當(dāng)自動駕駛技術(shù)普及之后,一旦出現(xiàn)問題,便可能導(dǎo)致大規(guī)模的連續(xù)性傷害。但不同機(jī)、大型水壩、原子核科技等二十世紀(jì)的公共危險(xiǎn)源,人工智能的發(fā)展具有極強(qiáng)的開放性,任何一個程序員或公司都可以毫無門檻的進(jìn)行人工智能程序的開發(fā)與應(yīng)用。這一方面是由于互聯(lián)網(wǎng)時(shí)代的到來,使得基于代碼的生產(chǎn)門檻被大大降低[14];另一方面,這也是人工智能本身發(fā)展規(guī)律的需要。正如前文所提到,唯有大規(guī)模的數(shù)據(jù)輸入才可能得到較好的機(jī)器學(xué)習(xí)結(jié)果,因此將人工智能的平臺(也即算法)以開源形式公開出來,以使更多的人在不同場景之下加以利用并由此吸收更多、更完備的數(shù)據(jù)以完善算法本身,就成為了大多數(shù)人工智能公司的必然選擇。與此同時(shí),人工智能生產(chǎn)模式的開放性也必然帶來發(fā)展的不確定性,在缺乏有效約束或引導(dǎo)的情況下,人工智能的發(fā)展很可能走向歧途。面對這一新形勢,傳統(tǒng)的、基于科層制的治理結(jié)構(gòu)顯然難以做出有效應(yīng)對。一方面,政府試圖全范圍覆蓋的事前監(jiān)管已經(jīng)成為不可能,開放的人工智能生產(chǎn)網(wǎng)絡(luò)使得監(jiān)管機(jī)構(gòu)幾乎找不到監(jiān)管對象;另一方面,由上至下的權(quán)威結(jié)構(gòu)既不能傳遞給生產(chǎn)者,信息不對稱問題的加劇還可能導(dǎo)致監(jiān)管行為走向反面。調(diào)整治理結(jié)構(gòu)與治理邏輯,并形成適應(yīng)具有開放性、不確定性特征的人工智能生產(chǎn)模式,是當(dāng)前面臨的治理挑戰(zhàn)之一。
再者,治理方法的滯后性,即長久以來建立在人類行為因果關(guān)系基礎(chǔ)上的法律規(guī)制體系,可能難以適用于以算法、數(shù)據(jù)為主體的應(yīng)用環(huán)境。人工智能的價(jià)值并不在于模仿人類行為,而是其具備自主的學(xué)習(xí)和決策能力;正因?yàn)槿绱耍斯ぶ悄芗夹g(shù)才不能簡單地理解為其創(chuàng)造者(即人)意志的表達(dá)。程序員給出的只是學(xué)習(xí)規(guī)則,但真正做出決策的是基于大規(guī)模數(shù)據(jù)訓(xùn)練后的算法本身,而這一結(jié)果與程序員的意志并無直接因果關(guān)聯(lián)。事實(shí)上也正由于這個特點(diǎn),AlphaGo才可能連續(xù)擊敗圍棋冠軍,而其設(shè)計(jì)者卻并非圍棋頂尖大師。也正是在這個意義上,我們才回到了??滤缘摹凹夹g(shù)的主體性”概念。在他看來,“技術(shù)并不僅僅是工具,或者不僅僅是達(dá)到目的的手段;相反,其是政治行動者,手段與目的密不可分”。[15]就此而言,長久以來通過探究行為與后果之因果關(guān)系來規(guī)范人的行為的法律規(guī)制體系,便可能遭遇窘境:如果將人工智能所造成的侵權(quán)行為歸咎于其設(shè)計(jì)者,無疑不具有說服力;但如果要?dú)w咎于人工智能本身,我們又該如何問責(zé)一個機(jī)器呢?由此,如何應(yīng)對以算法、數(shù)據(jù)為核心的技術(shù)主體所帶來的公共責(zé)任分配問題,是當(dāng)前面臨的第二個治理挑戰(zhàn)。
最后,治理范圍的狹隘性,即對于受人工智能發(fā)展沖擊而引發(fā)的新的社會議題,需要構(gòu)建新的治理體系和發(fā)展新的治理工具。人工智能發(fā)展所引發(fā)的治理挑戰(zhàn)不僅僅體現(xiàn)在現(xiàn)有體系的不適應(yīng)上,同時(shí)還有新議題所面臨的治理空白問題。具體而言,這又主要包括以下議題:算法是否能夠享有言論自由的憲法保護(hù),數(shù)據(jù)的權(quán)屬關(guān)系究竟如何界定,如何緩解人工智能所可能加劇的不平等現(xiàn)象,以及如何平衡人工智能的發(fā)展與失業(yè)問題。在人工智能時(shí)代之前,上述問題并不存在,或者說并不突出;但伴隨著人工智能的快速發(fā)展和應(yīng)用普及,它們的重要性便日漸顯著。以最為人所關(guān)注的失業(yè)問題為例,就技術(shù)可能性來說,人工智能和機(jī)器人的廣泛應(yīng)用代替人工勞動,已是一個不可否定的事實(shí)了。無論是新聞記者,還是股市分析員,甚至是法律工作者,其都有可能為機(jī)器所取代。在一個“充分自動化(Full Automation)”的世界中,如何重新認(rèn)識勞動與福利保障的關(guān)系、重構(gòu)勞動和福利保障制度,便成為最迫切需要解決的治理挑戰(zhàn)之一。[16]
上述三方面共同構(gòu)成了人工智能時(shí)代崛起所帶來的治理挑戰(zhàn)。面對這些挑戰(zhàn),各國也做出了相應(yīng)的公共政策選擇。本文第三部分將對各國人工智能的治理政策進(jìn)行對比性分析。在此基礎(chǔ)上,第四部分將提出本文的政策建議。
三、各國人工智能治理政策及監(jiān)管路徑綜述
人工智能時(shí)代的崛起作為一種普遍現(xiàn)象,其所引發(fā)的治理挑戰(zhàn)是各國面臨的共同問題,各國也陸續(xù)出臺了相關(guān)公共政策以試圖推動并規(guī)范人工智能的快速發(fā)展。
美國于2016年同時(shí)頒布了《國家人工智能研究與發(fā)展戰(zhàn)略規(guī)劃》和《為人工智能的未來做好準(zhǔn)備》兩個國家級政策框架,前者側(cè)重從技術(shù)角度指出美國人工智能戰(zhàn)略的目的、愿景和重點(diǎn)方向,而后者則更多從治理角度探討政府在促進(jìn)創(chuàng)新、保障公共安全方面所應(yīng)扮演的角色和作用。就具體的監(jiān)管政策而言,《為人工智能的未來做好準(zhǔn)備》提出了一般性的應(yīng)對方法,強(qiáng)調(diào)基于風(fēng)險(xiǎn)評估和成本-收益考量的原則以決定是否對人工智能技術(shù)的研發(fā)與應(yīng)用施以監(jiān)管負(fù)擔(dān)。[17]日本同樣于2016年出臺了《第五期(2016~2020年度)科學(xué)技術(shù)基本計(jì)劃》,提出了“超智能社會5.0”的概念,強(qiáng)調(diào)通過推動數(shù)據(jù)標(biāo)準(zhǔn)化、建設(shè)社會服務(wù)平臺、協(xié)調(diào)發(fā)展多領(lǐng)域智能系統(tǒng)等各方面工作促進(jìn)人工智能的發(fā)展和應(yīng)用。[18]
盡管美國和日本的政策著力點(diǎn)不同,但其共有的特點(diǎn)是對人工智能的發(fā)展及其所引發(fā)的挑戰(zhàn)持普遍的包容與開放態(tài)度。就當(dāng)前的政策框架而言,美日兩國的政策目標(biāo)更傾斜于推動技術(shù)創(chuàng)新、保持其國家競爭力的優(yōu)勢地位;當(dāng)涉及對人工智能所可能引發(fā)的公共問題施以監(jiān)管時(shí),其政策選擇也更傾向于遵循“無需批準(zhǔn)式(permissionless)”的監(jiān)管邏輯,即強(qiáng)調(diào)除非有充分案例證明其危害性,新技術(shù)和新商業(yè)模式默認(rèn)為都是被允許的。[19]至于人工智能的發(fā)展對個人數(shù)據(jù)隱私、社會公共安全的潛在威脅,盡管兩國的政策框架都有所涉及,卻并非其政策重心——相比之下,英國、法國則采取了不同的政策路徑。
英國政府2016年了《人工智能:未來決策制定的機(jī)遇與影響》,對人工智能的變革性影響以及如何利用人工智能做出了闡述與規(guī)劃,尤其關(guān)注到了人工智能發(fā)展所帶來的法律和倫理風(fēng)險(xiǎn)。在該報(bào)告中,英國政府強(qiáng)調(diào)了機(jī)器學(xué)習(xí)與個人數(shù)據(jù)相結(jié)合而對個人自由及隱私等基本權(quán)利所帶來的影響,明確了對使用人工智能所制定出的決策采用問責(zé)的概念和機(jī)制,并同時(shí)在算法透明度、算法一致性、風(fēng)險(xiǎn)分配等具體政策方面做出了規(guī)定。[20]與英國類似,法國在2017年的《人工智能戰(zhàn)略》中延續(xù)了其在2006年通過的《信息社會法案》的立法精神,同樣強(qiáng)調(diào)加強(qiáng)對新技術(shù)的“共同調(diào)控”,以在享有技術(shù)發(fā)展所帶來的福利改進(jìn)的同時(shí),充分保護(hù)個人權(quán)利和公共利益。[21]與美日相比,英法的公共政策更偏向于“審慎監(jiān)管(precautionary)”的政策邏輯,即強(qiáng)調(diào)新技術(shù)或新的商業(yè)模式只有在開發(fā)者證明其無害的前提下才被允許使用。[22]
在本文看來,無論是“無需批準(zhǔn)式監(jiān)管”還是“審慎監(jiān)管”,在應(yīng)對人工智能時(shí)代崛起所帶來的治理挑戰(zhàn)方面都有其可取之處:前者側(cè)重于推動創(chuàng)新,而后者則因重視安全而更顯穩(wěn)健。但需要指出的是,這兩種監(jiān)管路徑的不足卻也十分明顯。正如前文第二部分所指出,一方面,快速迭代的技術(shù)發(fā)展與商業(yè)模式創(chuàng)新必將引發(fā)新的社會議題,無論是算法是否受到言論自由的權(quán)利保護(hù)還是普遍失業(yè)對社會形成的挑戰(zhàn),它們都在客觀上要求公共政策做出應(yīng)對,而非片面的“無需批準(zhǔn)式監(jiān)管”能夠處理。更重要的是,“無需批準(zhǔn)式監(jiān)管”的潛在假設(shè)是事后監(jiān)管的有效性;然而,在事實(shí)上,正如2010年5月6日美國道瓊斯工業(yè)指數(shù)“瞬間崩盤”事件所揭示的,即使單個電子交易程序合規(guī)運(yùn)行,當(dāng)各個系統(tǒng)行為聚合在一起時(shí)反而卻造成了更大的危機(jī)。[23]在此種情形下,依賴于合規(guī)性判斷的“事后監(jiān)管”基本上難以有效實(shí)施。另一方面,人工智能本身的自主性和主體性使得建立在人類行為因果關(guān)系基礎(chǔ)上的“審慎監(jiān)管”邏輯存在天然缺陷:既然人類無法預(yù)知人工智能系統(tǒng)可能的行為或決策,開發(fā)者又如何證明人工智能系統(tǒng)的無害性?
正如本文所反復(fù)強(qiáng)調(diào)的,人工智能與其他革命性技術(shù)的不同之處,正是在于其所帶來的社會沖擊的綜合性和基礎(chǔ)性。人工智能并非單個領(lǐng)域、單個產(chǎn)業(yè)的技術(shù)突破,而是對于社會運(yùn)行狀態(tài)的根本性變革;人工智能時(shí)代的崛起也并非一夜之功,而是建立在計(jì)算機(jī)革命、互聯(lián)網(wǎng)革命直至數(shù)字革命基礎(chǔ)上的“奇點(diǎn)”變革。因此,面對人工智能時(shí)代崛起所帶來的治理挑戰(zhàn),我們同樣應(yīng)該制定綜合性的公共政策框架,而非僅僅沿襲傳統(tǒng)治理邏輯,例如只是針對具體議題在“創(chuàng)新”與“安全”這個二元維度下進(jìn)行艱難選擇。本文在第四部分從承認(rèn)技術(shù)的主體性、重構(gòu)社會治理制度、推進(jìn)人工智能全球治理這三方面提出了政策建議,并希望以此推動更深入地圍繞人工智能時(shí)代公共政策選擇的研究與討論。
四、人工智能時(shí)代的公共政策選擇
《新一代人工智能發(fā)展規(guī)劃》明確提出了到2030年我國人工智能發(fā)展的“三步走”目標(biāo),而在每一個階段,人工智能法律法規(guī)、倫理規(guī)范和政策體系的逐步建立與完善都是必不可少的重要內(nèi)容。面對人工智能時(shí)代崛起的治理挑戰(zhàn),究竟應(yīng)該如何重構(gòu)治理體系、創(chuàng)新治理機(jī)制、發(fā)展治理工具,是擺在決策者面前的重要難題。本文基于對人工智能基本概念和發(fā)展邏輯的梳理分析,結(jié)合各國已有政策的對比分析,提出以下三方面的改革思路,以為人工智能時(shí)代的公共選擇提供參考。
第一,人工智能發(fā)展的基石是算法與數(shù)據(jù),建立并完善圍繞算法和數(shù)據(jù)的治理體系與治理機(jī)制,是人工智能時(shí)代公共政策選擇的首要命題,也是應(yīng)對治理挑戰(zhàn)、賦予算法和數(shù)據(jù)以主體性的必然要求。(1)就算法治理而言,涉及的核心議題是算法的制定權(quán)及相應(yīng)的監(jiān)督程序問題。算法作為人工智能時(shí)代的主要規(guī)則,究竟誰有權(quán)并通過何種程序來加以制定,誰來對其進(jìn)行監(jiān)督且又如何監(jiān)督?長久以來公眾針對社交媒體臉書(Facebook)的質(zhì)疑正體現(xiàn)了這一問題的重要性:公眾如何相信臉書向用戶自動推薦的新聞內(nèi)容不會摻雜特殊利益的取向?[24]當(dāng)越來越多的人依賴定制化的新聞推送時(shí),人工智能甚至?xí)绊懙娇偨y(tǒng)選舉。也正因?yàn)榇?,包括透明要求、開源要求在內(nèi)的諸多治理原則,應(yīng)當(dāng)被納入到算法治理相關(guān)議題的考慮之中。(2)就數(shù)據(jù)治理而言,伴隨著人工智能越來越多地依賴于大規(guī)模數(shù)據(jù)的收集與利用,個人隱私的保護(hù)、數(shù)據(jù)價(jià)值的分配、數(shù)據(jù)安全等相關(guān)議題也必將成為公共政策的焦點(diǎn)。如何平衡不同價(jià)值需求、規(guī)范數(shù)據(jù)的分享與應(yīng)用,也同樣成為人工智能時(shí)代公共政策選擇的另一重要抓手。
第二,創(chuàng)新社會治理制度,進(jìn)一步完善社會保障體系,在最大程度上緩解人工智能發(fā)展所可能帶來的不確定性沖擊。與歷史上的技術(shù)革命類似,人工智能的發(fā)展同樣會導(dǎo)致利益的分化與重構(gòu),而如何保證技術(shù)革命成本的承受者得到最大限度的彌補(bǔ)并使所有人都享有技術(shù)發(fā)展的“獲得感”,不僅是社會發(fā)展公平、正義的必然要求,也是促進(jìn)技術(shù)革命更快完成的催化劑。就此而言,在人工智能相關(guān)公共政策的考量中,我們不僅應(yīng)該關(guān)注產(chǎn)業(yè)和經(jīng)濟(jì)政策,同時(shí)也應(yīng)該關(guān)注社會政策,因?yàn)橹挥泻笳叩耐晟撇拍軌蚩刂乒と嘶蚱髽I(yè)家所承擔(dān)的風(fēng)險(xiǎn),并幫助他們判斷是否支持或抵制變革的發(fā)生。就具體的政策設(shè)計(jì)來說,為緩解人工智能所可能帶來的失業(yè)潮,基本收入制度的普遍建立可能應(yīng)該被提上討論議程了?!盎臼杖搿笔侵刚喂餐w(如國家)向所有成員不加任何限制條件地支付一定數(shù)額的收入,以滿足其基本生活的需求。盡管存在“養(yǎng)懶漢”的質(zhì)疑,但有研究者已指出,自18世紀(jì)就開始構(gòu)想的基本收入制度很有可能反過來促進(jìn)就業(yè)。[25]芬蘭政府已經(jīng)于2017年初開始了相關(guān)實(shí)驗(yàn),美國的一些州、瑞士也做出了一定探索。在人工智能時(shí)代尚未完全展現(xiàn)其“猙容”之前,創(chuàng)新社會治理機(jī)制、完善社會保障體系,可能是平衡技術(shù)創(chuàng)新與社會風(fēng)險(xiǎn)的最佳路徑。
第三,構(gòu)建人工智能全球治理機(jī)制,以多種形式促進(jìn)人工智能重大國際共性問題的解決,共同應(yīng)對開放性人工智能生產(chǎn)模式的全球性挑戰(zhàn)。人工智能的發(fā)展具有開放性和不確定性的特征,生產(chǎn)門檻的降低使得人工智能技術(shù)研發(fā)的跨國流動性很強(qiáng),相關(guān)標(biāo)準(zhǔn)的制定、開放平臺的搭建、共享合作框架的形成,無不要求構(gòu)建相應(yīng)的全球治理機(jī)制。另一方面,跨境數(shù)據(jù)流動在廣度和深度上的快速發(fā)展成為了人工智能技術(shù)進(jìn)步的直接推動力,但各國數(shù)據(jù)規(guī)制制度的巨大差異在制約跨境數(shù)據(jù)流動進(jìn)一步發(fā)展的同時(shí),也將影響人工智能時(shí)代的全面到來。[26]故此,創(chuàng)新全球治理機(jī)制,在承認(rèn)各國制度差異的前提下尋找合作共享的可能性,便成為人工智能時(shí)代公共政策選擇的重要考量之一。就具體的機(jī)制設(shè)計(jì)而言,可以在人工智能全球治理機(jī)制的構(gòu)建中引入多利益相關(guān)模式;另一方面,為防止巨頭壟斷的形成,充分發(fā)揮主權(quán)國家作用的多邊主義模式同樣不可忽視。作為影響深遠(yuǎn)的基礎(chǔ)性技術(shù)變革,互聯(lián)網(wǎng)全球治理機(jī)制的經(jīng)驗(yàn)和教訓(xùn)值得人工智能發(fā)展所借鑒。
上述三方面從整體上對人工智能時(shí)代的公共政策框架做出了闡述。與傳統(tǒng)政策局限于“創(chuàng)新”與“安全”之間做出二維選擇不同,本文以更綜合的視角提出了未來公共政策選擇的可能路徑。就其內(nèi)在聯(lián)系來講,建立并完善圍繞算法和數(shù)據(jù)的治理體系是起點(diǎn),其將重構(gòu)人工智能時(shí)代的規(guī)則與制度;創(chuàng)新社會治理機(jī)制并完善社會保障體系是底線,其將緩解人工智能所帶來的影響與波動;構(gòu)建全球治理機(jī)制則成為了制度性的基礎(chǔ)設(shè)施,推動各國在此之上共同走向人工智能時(shí)代的“人類命運(yùn)共同體”。
五、結(jié)語
在經(jīng)歷了60余年的發(fā)展之后,人工智能終于在互聯(lián)網(wǎng)、大數(shù)據(jù)、機(jī)器學(xué)習(xí)等諸多技術(shù)取得突破的基礎(chǔ)上實(shí)現(xiàn)了騰飛。在未來的人類生活中,人工智能也必將扮演越來越重要的角色。對于這樣的圖景,我們自不必驚慌,但卻也不可掉以輕心。對于人工智能的治理,找到正確的方向并采取合理的措施,正是當(dāng)下所應(yīng)該重視的政策議題。而本文的主旨也正在于此:打破長久以來人們對于人工智能的“籠統(tǒng)”式擔(dān)憂,指出人工智能技術(shù)發(fā)展的技術(shù)邏輯及其所引發(fā)的治理挑戰(zhàn),并在此基礎(chǔ)上提出相應(yīng)的政策選擇。人工智能治理的這三個基本問題,是重構(gòu)治理體系、創(chuàng)新治理機(jī)制、發(fā)展治理工具所必須思考的前提。伴隨著我國國家層面戰(zhàn)略規(guī)劃的出臺,我國人工智能的發(fā)展也必將躍上新臺階。在此背景下,深入探討人工智能治理的相關(guān)公共政策議題,對于助推一個人工智能時(shí)代的崛起而言,既有其必要性,也有其迫切性。(來源:中國行政管理 文/賈開 蔣余浩 編選:中國電子商務(wù)研究中心)
[參考文獻(xiàn)]
[1]國務(wù)院關(guān)于印發(fā)新一代人工智能發(fā)展規(guī)劃的通知[EB/OL]. http://gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[2]霍金. AI可能成就或者終結(jié)人類文明[EB/OL].http://raincent.com/content-10-7672-1.html.
[3] Elon Musk. Artificial Intelligence is Our Biggest Existential Threat. https://theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat.
[4] Microsoft's Bill Gates Insists AI is A Threat. http://bbc.com/news/31047780. 2017-8-14.
[5] [以]赫拉利.人類簡史[M].北京:中信出版社,2014.
[6] The President in Conversation With MIT’s Joi Ito and WIRED’s Scott Dadich. https://wired.com/2016/10/president-obama-mit-joi-ito-interview/. 2017-8-14.
[7] Turing,A. M. Computing Machinery and Intelligence. Mind,1950,59(236).
[8] [9][10] McCarthy,J.What is Artificial Intelligence. URL:http://www-formal.stanford.edu/jmc/whatisai/whatisai.html.
[11] [12][13] [美]佩德羅-多明戈斯.終極算法:機(jī)器學(xué)習(xí)和人工智能如何重塑世界[M].黃芳萍譯.北京:中信出版社,2016.
[14] Benkler,Y. The Wealth of Networks:How Social Production Transforms Markets and Freedom. Yale University Press,2006.
[15] Foucoult,M. Discipline and Punish. A. Sheridan,Tr.,Paris,F(xiàn)R,Gallimard,1975.
[16] Srnicek,N.,& Williams,A. The Future isn't Working. Juncture,2015,22(3):243-247.
[17] Preparing for the Future of Artificial Intelligence. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. 2017-8-14.
[18]薛亮.“日本推動實(shí)現(xiàn)超智能社會‘社會5.0’”[EB/OL]. http://istis.sh.cn/list/list.aspx?id=10535.
[19] Thierer,A. Permissionless Innovation:The Continuing Case for Comprehensive Technological Freedom. Mercatus Center at George Mason University,2016.
[20] Artificial Intelligence:Opportunities and Implications for the Future of Decision Making.https://gov.uk/government/uploads/system/uploads/attachment_data/file/566075/gs-16-19-artificial-intelligence-ai-report.pdf.
[21]周衍冰.大數(shù)據(jù)產(chǎn)業(yè)在法國的發(fā)展及應(yīng)用[N].學(xué)習(xí)時(shí)報(bào),2014-11-03.
[22] Thierer,A. D.,& Watney,C. J. Comment on the Federal Automated Vehicles Policy,2016.
[23] [美]杰瑞·卡普蘭.人工智能時(shí)代:人機(jī)共生下財(cái)富、工作與思維的大未來[M].杭州浙江人民出版社,2016.
[24] Marcel Rosenbach. How Google and Facebook Can Reshape Elections.http://spiegel.de/international/germany/google-and-facebook-could-help-decide-2017-german-election-a-1120156.html.
現(xiàn)代邏輯創(chuàng)始于19世紀(jì)末葉和20世紀(jì)早期,其發(fā)展動力主要來自于數(shù)學(xué)中的公理化運(yùn)動。當(dāng)時(shí)的數(shù)學(xué)家們試圖即從少數(shù)公理根據(jù)明確給出的演繹規(guī)則推導(dǎo)出其他的數(shù)學(xué)定理,從而把整個數(shù)學(xué)構(gòu)造成為一個嚴(yán)格的演繹大廈,然后用某種程序和方法一勞永逸地證明數(shù)學(xué)體系的可靠性。為此需要發(fā)明和鍛造嚴(yán)格、精確、適用的邏輯工具。這是現(xiàn)代邏輯誕生的主要動力。由此造成的后果就是20世紀(jì)邏輯研究的嚴(yán)重?cái)?shù)學(xué)化,其表現(xiàn)在于:一是邏輯專注于在數(shù)學(xué)的形式化過程中提出的問題;二是邏輯采納了數(shù)學(xué)的方法論,從事邏輯研究就意味著象數(shù)學(xué)那樣用嚴(yán)格的形式證明去解決問題。由此發(fā)展出來的邏輯被恰當(dāng)?shù)胤Q為“數(shù)理邏輯”,它增強(qiáng)了邏輯研究的深度,使邏輯學(xué)的發(fā)展繼古希臘邏輯、歐洲中世紀(jì)邏輯之后進(jìn)入第三個高峰期,并且對整個現(xiàn)代科學(xué)特別是數(shù)學(xué)、哲學(xué)、語言學(xué)和計(jì)算機(jī)科學(xué)產(chǎn)生了非常重要的影響。
本文所要探討的問題是:21世紀(jì)邏輯發(fā)展的主要動力將來自何處?大致說來將如何發(fā)展?我個人的看法是:計(jì)算機(jī)科學(xué)和人工智能將至少是21世紀(jì)早期邏輯學(xué)發(fā)展的主要動力源泉,并將由此決定21世紀(jì)邏輯學(xué)的另一幅面貌。由于人工智能要模擬人的智能,它的難點(diǎn)不在于人腦所進(jìn)行的各種必然性推理(這一點(diǎn)在20世紀(jì)基本上已經(jīng)做到了,如用計(jì)算機(jī)去進(jìn)行高難度和高強(qiáng)度的數(shù)學(xué)證明,“深藍(lán)”通過高速、大量的計(jì)算去與世界冠軍下棋),而是最能體現(xiàn)人的智能特征的能動性、創(chuàng)造性思維,這種思維活動中包括學(xué)習(xí)、抉擇、嘗試、修正、推理諸因素,例如選擇性地搜集相關(guān)的經(jīng)驗(yàn)證據(jù),在不充分信息的基礎(chǔ)上作出嘗試性的判斷或抉擇,不斷根據(jù)環(huán)境反饋調(diào)整、修正自己的行為,……由此達(dá)到實(shí)踐的成功。于是,邏輯學(xué)將不得不比較全面地研究人的思維活動,并著重研究人的思維中最能體現(xiàn)其能動性特征的各種不確定性推理,由此發(fā)展出的邏輯理論也將具有更強(qiáng)的可應(yīng)用性。
實(shí)際上,在20世紀(jì)中后期,就已經(jīng)開始了現(xiàn)代邏輯與人工智能(記為AI)之間的相互融合和滲透。例如,哲學(xué)邏輯所研究的許多課題在理論計(jì)算機(jī)和人工智能中具有重要的應(yīng)用價(jià)值。AI從認(rèn)知心理學(xué)、社會科學(xué)以及決策科學(xué)中獲得了許多資源,但邏輯(包括哲學(xué)邏輯)在AI中發(fā)揮了特別突出的作用。某些原因促使哲學(xué)邏輯家去發(fā)展關(guān)于非數(shù)學(xué)推理的理論;基于幾乎同樣的理由,AI研究者也在進(jìn)行類似的探索,這兩方面的研究正在相互接近、相互借鑒,甚至在逐漸融合在一起。例如,AI特別關(guān)心下述課題:
·效率和資源有限的推理;
·感知;
·做計(jì)劃和計(jì)劃再認(rèn);
·關(guān)于他人的知識和信念的推理;
·各認(rèn)知主體之間相互的知識;
·自然語言理解;
·知識表示;
·常識的精確處理;
·對不確定性的處理,容錯推理;
·關(guān)于時(shí)間和因果性的推理;
·解釋或說明;
·對歸納概括以及概念的學(xué)習(xí)。[①]
21世紀(jì)的邏輯學(xué)也應(yīng)該關(guān)注這些問題,并對之進(jìn)行研究。為了做到這一點(diǎn),邏輯學(xué)家們有必要熟悉AI的要求及其相關(guān)進(jìn)展,使其研究成果在AI中具有可應(yīng)用性。
我認(rèn)為,至少是21世紀(jì)早期,邏輯學(xué)將會重點(diǎn)關(guān)注下述幾個領(lǐng)域,并且有可能在這些領(lǐng)域出現(xiàn)具有重大意義的成果:(1)如何在邏輯中處理常識推理中的弗協(xié)調(diào)、非單調(diào)和容錯性因素?(2)如何使機(jī)器人具有人的創(chuàng)造性智能,如從經(jīng)驗(yàn)證據(jù)中建立用于指導(dǎo)以后行動的歸納判斷?(3)如何進(jìn)行知識表示和知識推理,特別是基于已有的知識庫以及各認(rèn)知主體相互之間的知識而進(jìn)行的推理?(4)如何結(jié)合各種語境因素進(jìn)行自然語言理解和推理,使智能機(jī)器人能夠用人的自然語言與人進(jìn)行成功的交際?等等。
1.常識推理中的某些弗協(xié)調(diào)、非單調(diào)和容錯性因素
AI研究的一個目標(biāo)就是用機(jī)器智能模擬人的智能,它選擇各種能反映人的智能特征的問題進(jìn)行實(shí)踐,希望能做出各種具有智能特征的軟件系統(tǒng)。AI研究基于計(jì)算途徑,因此要建立具有可操作性的符號模型。一般而言,AI關(guān)于智能系統(tǒng)的符號模型可描述為:由一個知識載體(稱為知識庫KB)和一組加載在KB上的足以產(chǎn)生智能行為的過程(稱為問題求解器PS)構(gòu)成。經(jīng)過20世紀(jì)70年代包括專家系統(tǒng)的發(fā)展,AI研究者逐步取得共識,認(rèn)識到知識在智能系統(tǒng)中力量,即一般的智能系統(tǒng)事實(shí)上是一種基于知識的系統(tǒng),而知識包括專門性知識和常識性知識,前者亦可看做是某一領(lǐng)域內(nèi)專家的常識。于是,常識問題就成為AI研究的一個核心問題,它包括兩個方面:常識表示和常識推理,即如何在人工智能中清晰地表示人類的常識,并運(yùn)用這些常識去進(jìn)行符合人類行為的推理。顯然,如此建立的常識知識庫可能包含矛盾,是不協(xié)調(diào)的,但這種矛盾或不協(xié)調(diào)應(yīng)不至于影響到進(jìn)行合理的推理行為;常識推理還是一種非單調(diào)推理,即人們基于不完全的信息推出某些結(jié)論,當(dāng)人們得到更完全的信息后,可以改變甚至收回原來的結(jié)論;常識推理也是一種可能出錯的不精確的推理模式,是在容許有錯誤知識的情況下進(jìn)行的推理,簡稱容錯推理。而經(jīng)典邏輯拒斥任何矛盾,容許從矛盾推出一切命題;并且它是單調(diào)的,即承認(rèn)如下的推理模式:如果p?r,則pùq?r;或者說,任一理論的定理屬于該理論之任一擴(kuò)張的定理集。因此,在處理常識表示和常識推理時(shí),經(jīng)典邏輯應(yīng)該受到限制和修正,并發(fā)展出某些非經(jīng)典的邏輯,如次協(xié)調(diào)邏輯、非單調(diào)邏輯、容錯推理等。有人指出,常識推理的邏輯是次協(xié)調(diào)邏輯和非單調(diào)邏輯的某種結(jié)合物,而后者又可看做是對容錯推理的簡單且基本的情形的一種形式化。[②]
“次協(xié)調(diào)邏輯”(ParaconsistentLogic)是由普里斯特、達(dá)·科斯塔等人在對悖論的研究中發(fā)展出來的,其基本想法是:當(dāng)在一個理論中發(fā)現(xiàn)難以克服的矛盾或悖論時(shí),與其徒勞地想盡各種辦法去排除或防范它們,不如干脆讓它們留在理論體系內(nèi),但把它們“圈禁”起來,不讓它們?nèi)我鈹U(kuò)散,以免使我們所創(chuàng)立或研究的理論成為“不足道”的。于是,在次協(xié)調(diào)邏輯中,能夠容納有意義、有價(jià)值的“真矛盾”,但這些矛盾并不能使系統(tǒng)推出一切,導(dǎo)致自毀。因此,這一新邏輯具有一種次于經(jīng)典邏輯但又遠(yuǎn)遠(yuǎn)高于完全不協(xié)調(diào)系統(tǒng)的協(xié)調(diào)性。次協(xié)調(diào)邏輯家們認(rèn)為,如果在一理論T中,一語句A及其否定?A都是定理,則T是不協(xié)調(diào)的;否則,稱T是協(xié)調(diào)的。如果T所使用的邏輯含有從互相否定的兩公式可推出一切公式的規(guī)則或推理,則不協(xié)調(diào)的T也是不足道的(trivial)。因此,通常以經(jīng)典邏輯為基礎(chǔ)的理論,如果它是不協(xié)調(diào)的,那它一定也是不足道的。這一現(xiàn)象表明,經(jīng)典邏輯雖可用于研究協(xié)調(diào)的理論,但不適用于研究不協(xié)調(diào)但又足道的理論。達(dá)·科斯塔在20世紀(jì)60年代構(gòu)造了一系列次協(xié)調(diào)邏輯系統(tǒng)Cn(1≤n≤w),以用作不協(xié)調(diào)而又足道的理論的邏輯工具。對次協(xié)調(diào)邏輯系統(tǒng)Cn的特征性描述包括下述命題:(i)矛盾律?(Aù?A)不普遍有效;(ii)從兩個相互否定的公式A和?A推不出任意公式;即是說,矛盾不會在系統(tǒng)中任意擴(kuò)散,矛盾不等于災(zāi)難。(iii)應(yīng)當(dāng)容納與(i)和(ii)相容的大多數(shù)經(jīng)典邏輯的推理模式和規(guī)則。這里,(i)和(ii)表明了對矛盾的一種相對寬容的態(tài)度,(iii)則表明次協(xié)調(diào)邏輯對于經(jīng)典邏輯仍有一定的繼承性。
在任一次協(xié)調(diào)邏輯系統(tǒng)Cn(1≤n≤w)中,下述經(jīng)典邏輯的定理或推理模式都不成立:
?(Aù?A)
Aù?AB
A(?AB)
(A??A)B
(A??A)?B
A??A
(?Aù(AúB))B
(AB)(?B?A)
若以C0為經(jīng)典邏輯,則系列C0,C1,C2,…Cn,…Cw使得對任正整數(shù)i有Ci弱于Ci-1,Cw是這系列中最弱的演算。已經(jīng)為Cn設(shè)計(jì)出了合適的語義學(xué),并已經(jīng)證明Cn相對于此種語義是可靠的和完全的,并且次協(xié)調(diào)命題邏輯系統(tǒng)Cn還是可判定的?,F(xiàn)在,已經(jīng)有人把次協(xié)調(diào)邏輯擴(kuò)展到模態(tài)邏輯、時(shí)態(tài)邏輯、道義邏輯、多值邏輯、集合論等領(lǐng)域的研究中,發(fā)展了這些領(lǐng)域內(nèi)的次協(xié)調(diào)理論。顯然,次協(xié)調(diào)邏輯將會得到更進(jìn)一步的發(fā)展。[③]
非單調(diào)邏輯是關(guān)于非單調(diào)推理的邏輯,它的研究開始于20世紀(jì)80年代。1980年,D·麥克多莫特和J·多伊爾初步嘗試著系統(tǒng)發(fā)展一種關(guān)于非單調(diào)推理的邏輯。他們在經(jīng)典謂詞演算中引入一個算子M,表示某種“一致性”斷言,并將其看做是模態(tài)概念,通過一定程序把模態(tài)邏輯系統(tǒng)T、S4和S5翻譯成非單調(diào)邏輯。B·摩爾的論文《非單調(diào)邏輯的語義思考》(1983)據(jù)認(rèn)為在非單調(diào)邏輯方面作出了令人注目的貢獻(xiàn)。他在“缺省推理”和“自動認(rèn)知推理”之間做了區(qū)分,并把前者看作是在沒有任何相反信息和缺少證據(jù)的條件下進(jìn)行推理的過程,這種推理的特征是試探性的:根據(jù)新信息,它們很可能會被撤消。自動認(rèn)知推理則不是這種類型,它是與人們自身的信念或知識相關(guān)的推理,可用它模擬一個理想的具有信念的有理性的人的推理。對于在計(jì)算機(jī)和人工智能中獲得成功的應(yīng)用而言,非單調(diào)邏輯尚需進(jìn)一步發(fā)展。
2.歸納以及其他不確定性推理
人類智能的本質(zhì)特征和最高表現(xiàn)是創(chuàng)造。在人類創(chuàng)造的過程中,具有必然性的演繹推理固然起重要作用,但更為重要的是具有某種不確定性的歸納、類比推理以及模糊推理等。因此,計(jì)算機(jī)要成功地模擬人的智能,真正體現(xiàn)出人的智能品質(zhì),就必須對各種具有不確定性的推理模式進(jìn)行研究。
首先是對歸納推理和歸納邏輯的研究。這里所說的“歸納推理”是廣義的,指一切擴(kuò)展性推理,它們的結(jié)論所斷定的超出了其前提所斷定的范圍,因而前提的真無法保證結(jié)論的真,整個推理因此缺乏必然性。具體說來,這種意義的“歸納”包括下述內(nèi)容:簡單枚舉法;排除歸納法,指這樣一些操作:預(yù)先通過觀察或?qū)嶒?yàn)列出被研究現(xiàn)象的可能的原因,然后有選擇地安排某些事例或?qū)嶒?yàn),根據(jù)某些標(biāo)準(zhǔn)排除不相干假設(shè),最后得到比較可靠的結(jié)論;統(tǒng)計(jì)概括:從關(guān)于有窮數(shù)目樣本的構(gòu)成的知識到關(guān)于未知總體分布構(gòu)成的結(jié)論的推理;類比論證和假說演繹法,等等。盡管休謨提出著名的“歸納問題”,對歸納推理的合理性和歸納邏輯的可能性提出了深刻的質(zhì)疑,但我認(rèn)為,(1)歸納是在茫茫宇宙中生存的人類必須采取也只能采取的認(rèn)知策略,對于人類來說具有實(shí)踐的必然性。(2)人類有理由從經(jīng)驗(yàn)的重復(fù)中建立某種確實(shí)性和規(guī)律性,其依據(jù)就是確信宇宙中存在某種類似于自然齊一律和客觀因果律之類的東西。這一確信是合理的,而用純邏輯的理由去懷疑一個關(guān)于世界的事實(shí)性斷言則是不合理的,除非這個斷言是邏輯矛盾。(3)人類有可能建立起局部合理的歸納邏輯和歸納方法論。并且,歸納邏輯的這種可能性正在計(jì)算機(jī)科學(xué)和人工智能的研究推動下慢慢地演變成現(xiàn)實(shí)。恩格斯早就指出,“社會一旦有技術(shù)上的需要,則這種需要比十所大學(xué)更能把科學(xué)推向前進(jìn)?!盵④]有人通過指責(zé)現(xiàn)有的歸納邏輯不成熟,得出“歸納邏輯不可能”的結(jié)論,他們的推理本身與歸納推理一樣,不具有演繹的必然性。(4)人類實(shí)踐的成功在一定程度上證明了相應(yīng)的經(jīng)驗(yàn)知識的真理性,也就在一定程度上證明了歸納邏輯和歸納方法論的力量。毋庸否認(rèn),歸納邏輯目前還很不成熟。有的學(xué)者指出,為了在機(jī)器的智能模擬中克服對歸納模擬的困難而有所突破,應(yīng)該將歸納邏輯等有關(guān)的基礎(chǔ)理論研究與機(jī)器學(xué)習(xí)、不確定推理和神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)模型與歸納學(xué)習(xí)中已有的成果結(jié)合起來。只有這樣,才能在已有的歸納學(xué)習(xí)成果上,在機(jī)器歸納和機(jī)器發(fā)現(xiàn)上取得新的突破和進(jìn)展。[⑤]這是一個極有價(jià)值且極富挑戰(zhàn)性的課題,無疑在21世紀(jì)將得到重視并取得進(jìn)展。
再談模糊邏輯?,F(xiàn)實(shí)世界中充滿了模糊現(xiàn)象,這些現(xiàn)象反映到人的思維中形成了模糊概念和模糊命題,如“矮個子”、“美人”、“甲地在乙地附近”、“他很年輕”等。研究模糊概念、模糊命題和模糊推理的邏輯理論叫做“模糊邏輯”。對它的研究始于20世紀(jì)20年代,其代表性人物是L·A·查德和P·N·馬林諾斯。模糊邏輯為精確邏輯(二值邏輯)解決不了的問題提供了解決的可能,它目前在醫(yī)療診斷、故障檢測、氣象預(yù)報(bào)、自動控制以及人工智能研究中獲得重要應(yīng)用。顯然,它在21世紀(jì)將繼續(xù)得到更大的發(fā)展。
3.廣義內(nèi)涵邏輯
經(jīng)典邏輯只是對命題聯(lián)結(jié)詞、個體詞、謂詞、量詞和等詞進(jìn)行了研究,但在自然語言中,除了這些語言成分之外,顯然還存在許多其他的語言成分,如各種各樣的副詞,包括模態(tài)詞“必然”、“可能”和“不可能”、時(shí)態(tài)詞“過去”、“現(xiàn)在”和“未來”、道義詞“應(yīng)該”、“允許”、“禁止”等等,以及各種認(rèn)知動詞,如“思考”、“希望”、“相信”、“判斷”、“猜測”、“考慮”、“懷疑”,這些認(rèn)知動詞在邏輯和哲學(xué)文獻(xiàn)中被叫做“命題態(tài)度詞”。對這些副詞以及命題態(tài)度詞的邏輯研究可以歸類為“廣義內(nèi)涵邏輯”。
大多數(shù)副詞以及幾乎所有命題態(tài)度詞都是內(nèi)涵性的,造成內(nèi)涵語境,后者與外延語境構(gòu)成對照。外延語境又叫透明語境,是經(jīng)典邏輯的組合性原則、等值置換規(guī)則、同一性替換規(guī)則在其中適用的語境;內(nèi)涵語境又稱晦暗語境,是上述規(guī)則在其中不適用的語境。相應(yīng)于外延語境和內(nèi)涵語境的區(qū)別,一切語言表達(dá)式(包括自然語言的名詞、動詞、形容詞直至語句)都可以區(qū)分為外延性的和內(nèi)涵性的,前者是提供外延語境的表達(dá)式,后者是提供內(nèi)涵性語境的表達(dá)式。例如,殺死、見到、擁抱、吻、砍、踢、打、與…下棋等都是外延性表達(dá)式,而知道、相信、認(rèn)識、必然、可能、允許、禁止、過去、現(xiàn)在、未來等都是內(nèi)涵性表達(dá)式。在內(nèi)涵語境中會出現(xiàn)一些復(fù)雜的情況。首先,對于個體詞項(xiàng)來說,關(guān)鍵性的東西是我們不僅必須考慮它們在現(xiàn)實(shí)世界中的外延,而且要考慮它們在其他可能世界中的外延。例如,由于“必然”是內(nèi)涵性表達(dá)式,它提供內(nèi)涵語境,因而下述推理是非有效的:
晨星必然是晨星,
晨星就是暮星,
所以,晨星必然是暮星。
這是因?yàn)椋哼@個推理只考慮到“晨星”和“暮星”在現(xiàn)實(shí)世界中的外延,并沒有考慮到它們在每一個可能世界中的外延,我們完全可以設(shè)想一個可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我們就不能利用同一性替換規(guī)則,由該推理的前提得出它的結(jié)論:“晨星必然是暮星”。其次,在內(nèi)涵語境中,語言表達(dá)式不再以通常是它們的外延的東西作為外延,而以通常是它們的內(nèi)涵的東西作為外延。以“達(dá)爾文相信人是從猿猴進(jìn)化而來的”這個語句為例。這里,達(dá)爾文所相信的是“人是從猿猴進(jìn)化而來的”所表達(dá)的思想,而不是它所指稱的真值,于是在這種情況下,“人是從猿猴進(jìn)化而來的”所表達(dá)的思想(命題)就構(gòu)成它的外延。再次,在內(nèi)涵語境中,雖然適用于外延的函項(xiàng)性原則不再成立,但并不是非要拋棄不可,可以把它改述為新的形式:一復(fù)合表達(dá)式的外延是它出現(xiàn)于外延語境中的部分表達(dá)式的外延加上出現(xiàn)于內(nèi)涵語境中的部分表達(dá)式的內(nèi)涵的函項(xiàng)。這個新的組合性或函項(xiàng)性原則在內(nèi)涵邏輯中成立。
一般而言,一個好的內(nèi)涵邏輯至少應(yīng)滿足兩個條件:(i)它必須能夠處理外延邏輯所能處理的問題;(ii)它還必須能夠處理外延邏輯所不能處理的難題。這就是說,它既不能與外延邏輯相矛盾,又要克服外延邏輯的局限。這樣的內(nèi)涵邏輯目前正在發(fā)展中,并且已有初步輪廓。從術(shù)語上說,內(nèi)涵邏輯除需要真、假、語句真值的同一和不同、集合或類、謂詞的同范圍或不同范圍等外延邏輯的術(shù)語之外,還需要同義、內(nèi)涵的同一和差異、命題、屬性或概念這樣一些術(shù)語。廣而言之,可以把內(nèi)涵邏輯看作是關(guān)于象“必然”、“可能”、“知道”、“相信”,“允許”、“禁止”等提供內(nèi)涵語境的語句算子的一般邏輯。在這種廣義之下,模態(tài)邏輯、時(shí)態(tài)邏輯、道義邏輯、認(rèn)知邏輯、問題邏輯等都是內(nèi)涵邏輯。不過,還有一種狹義的內(nèi)涵邏輯,它可以粗略定義如下:一個內(nèi)涵邏輯是一個形式語言,其中包括(1)謂詞邏輯的算子、量詞和變元,這里的謂詞邏輯不必局限于一階謂詞邏輯,也可以是高階謂詞邏輯;(2)合式的λ—表達(dá)式,例如(λx)A,這里A是任一類型的表達(dá)式,x是任一類型的變元,(λx)A本身是一函項(xiàng),它把變元x在其中取值的那種類型的對象映射到A所屬的那種類型上;(3)其他需要的模態(tài)的或內(nèi)涵的算子,例如€,ù、ú。而一個內(nèi)涵邏輯的解釋,則由下列要素組成:(1)一個可能世界的非空集W;(2)一個可能個體的非空集D;(3)一個賦值,它給系統(tǒng)內(nèi)的表達(dá)式指派它們在每w∈W中的外延。對于任一的解釋Q和任一的世界w∈W,判定內(nèi)涵邏輯系統(tǒng)中的任一表達(dá)式X相對于解釋Q在w∈W中的外延總是可能的。這樣的內(nèi)涵邏輯系統(tǒng)有丘奇的LSD系統(tǒng),R·蒙塔古的IL系統(tǒng),以及E·N·扎爾塔的FIL系統(tǒng)等。[⑥]
在各種內(nèi)涵邏輯中,認(rèn)識論邏輯(epistemiclogic)具有重要意義。它有廣義和狹義之分。廣義的認(rèn)識論邏輯研究與感知(perception)、知道、相信、斷定、理解、懷疑、問題和回答等相關(guān)的邏輯問題,包括問題邏輯、知道邏輯、相信邏輯、斷定邏輯等;狹義的認(rèn)識論邏輯僅指知道和相信的邏輯,簡稱“認(rèn)知邏輯”。馮·賴特在1951年提出了對“認(rèn)知模態(tài)”的邏輯分析,這對建立認(rèn)知邏輯具有極大的啟發(fā)作用。J·麥金西首先給出了一個關(guān)于“知道”的模態(tài)邏輯。A·帕普于1957年建立了一個基于6條規(guī)則的相信邏輯系統(tǒng)。J·亨迪卡于60年代出版的《知識和信念》一書是認(rèn)知邏輯史上的重要著作,其中提出了一些認(rèn)知邏輯的系統(tǒng),并為其建立了基于“模型集”的語義學(xué),后者是可能世界語義學(xué)的先導(dǎo)之一。當(dāng)今的認(rèn)知邏輯紛繁復(fù)雜,既不成熟也面臨許多難題。由于認(rèn)知邏輯涉及認(rèn)識論、心理學(xué)、語言學(xué)、計(jì)算機(jī)科學(xué)和人工智能等諸多領(lǐng)域,并且認(rèn)知邏輯的應(yīng)用技術(shù),又稱關(guān)于知識的推理技術(shù),正在成為計(jì)算機(jī)科學(xué)和人工智能的重要分支之一,因此認(rèn)知邏輯在20世紀(jì)中后期成為國際邏輯學(xué)界的一個熱門研究方向。這一狀況在21世紀(jì)將得到繼續(xù)并進(jìn)一步強(qiáng)化,在這方面有可能出現(xiàn)突破性的重要結(jié)果。
4.對自然語言的邏輯研究
對自然語言的邏輯研究有來自幾個不同領(lǐng)域的推動力。首先是計(jì)算機(jī)和人工智能的研究,人機(jī)對話和通訊、計(jì)算機(jī)的自然語言理解、知識表示和知識推理等課題,都需要對自然語言進(jìn)行精細(xì)的邏輯分析,并且這種分析不能僅停留在句法層面,而且要深入到語義層面。其次是哲學(xué)特別是語言哲學(xué),在20世紀(jì)哲學(xué)家們對語言表達(dá)式的意義問題傾注了異乎尋常的精力,發(fā)展了各種各樣的意義理論,如觀念論、指稱論、使用論、言語行為理論、真值條件論等等,以致有人說,關(guān)注意義成了20世紀(jì)哲學(xué)家的職業(yè)病。再次是語言學(xué)自身發(fā)展的需要,例如在研究自然語言的意義問題時(shí),不能僅僅停留在脫離語境的抽象研究上面,而要結(jié)合使用語言的特定環(huán)境去研究,這導(dǎo)致了語義學(xué)、語用學(xué)、新修辭學(xué)等等發(fā)展。各個方面發(fā)展的成果可以總稱為“自然語言邏輯”,它力圖綜合后期維特根斯坦提倡的使用論,J·L·奧斯汀、J·L·塞爾等人發(fā)展的言語行為理論,以及P·格賴斯所創(chuàng)立的會話含義學(xué)說等成果,透過自然語言的指謂性和交際性去研究自然語言中的推理。
自然語言具有表達(dá)和交際兩種職能,其中交際職能是自然語言最重要的職能,是它的生命力之所在。而言語交際總是在一定的語言環(huán)境(簡稱語境)中進(jìn)行的,語境有廣義和狹義之分。狹義的語境僅指一個語詞、一個句子出現(xiàn)的上下文。廣義的語境除了上下文之外,還包括該語詞或語句出現(xiàn)的整個社會歷史條件,如該語詞或語句出現(xiàn)的時(shí)間、地點(diǎn)、條件、講話的人(作者)、聽話的人(讀者)以及交際雙方所共同具有的背景知識,這里的背景知識包括交際雙方共同的信念和心理習(xí)慣,以及共同的知識和假定等等。這些語境因素對于自然語言的表達(dá)式(語詞、語句)的意義有著極其重要的影響,這具體表現(xiàn)在:(i)語境具有消除自然語言語詞的多義性、歧義性和模糊性的能力,具有嚴(yán)格規(guī)定語言表達(dá)式意義的能力。(ii)自然語言的句子常常包含指示代詞、人稱代詞、時(shí)間副詞等,要弄清楚這些句子的意義和內(nèi)容,就要弄清楚這句話是誰說的、對誰說的、什么時(shí)候說的、什么地點(diǎn)說的、針對什么說的,等等,這只有在一定的語境中才能進(jìn)行。依賴語境的其他類型的語句還有:包含著象“有些”和“每一個”這類量化表達(dá)式的句子的意義取決于依語境而定的論域,包含著象“大的”、“冷的”這類形容詞的句子的意義取決于依語境而定的相比較的對象類;模態(tài)語句和條件語句的意義取決于因語境而變化的語義決定因素,如此等等。(iii)語言表達(dá)式的意義在語境中會出現(xiàn)一些重要的變化,以至偏離它通常所具有的意義(抽象意義),而產(chǎn)生一種新的意義即語用涵義。有人認(rèn)為,一個語言表達(dá)式在它的具體語境中的意義,才是它的完全的真正的意義,一旦脫離開語境,它就只具有抽象的意義。語言的抽象意義和它的具體意義的關(guān)系,正象解剖了的死人肢體與活人肢體的關(guān)系一樣。邏輯應(yīng)該去研究、理解、把握自然語言的具體意義,當(dāng)然不是去研究某一個(或一組)特定的語句在某個特定語境中唯一無二的意義,而是專門研究確定自然語言具體意義的普遍原則。超級秘書網(wǎng)
美國語言學(xué)家保羅·格賴斯把語言表達(dá)式在一定的交際語境中產(chǎn)生的一種不同于字面意義的特殊涵義,叫做“語用涵義”、“會話涵義”或“隱涵”(implicature),并于1975年提出了一組“交際合作原則”,包括一個總則和四組準(zhǔn)則。總則的內(nèi)容是:在你參與會話時(shí),你要依據(jù)你所參與的談話交流的公認(rèn)目的或方向,使你的會話貢獻(xiàn)符合這種需要。仿照康德把范疇區(qū)分為量、質(zhì)、關(guān)系和方式四類,格賴斯提出了如下四組準(zhǔn)則:
(1)數(shù)量準(zhǔn)則:在交際過程中給出的信息量要適中。
a.給出所要求的信息量;
b.給出的信息量不要多于所要求的信息量。
(2)質(zhì)量準(zhǔn)則:力求講真話。
a.不說你認(rèn)為假的東西,。
b.不說你缺少適當(dāng)證據(jù)的東西。
(3)關(guān)聯(lián)準(zhǔn)則:說話要與已定的交際目的相關(guān)聯(lián)。
(4)方式準(zhǔn)則:說話要意思明確,表達(dá)清晰。
a.避免晦澀生僻的表達(dá)方式;
b.避免有歧義的表達(dá)方式;
c.說話要簡潔;
d.說話要有順序性。[⑧]
后來對這些原則提出了不和補(bǔ)充,例如有人還提出了交際過程中所要遵守的“禮貌原則”。只要把交際雙方遵守交際合作原則之類的語用規(guī)則作為基本前提,這些原則就可以用來確定和把握自然語言的具體意義(語用涵義)。實(shí)際上,一個語句p的語用涵義,就是聽話人在具體語境中根據(jù)語用規(guī)則由p得到的那個或那些語句。更具體地說,從說話人S說的話語p推出語用涵義q的一般過程是:
(i)S說了p;
(ii)沒有理由認(rèn)為S不遵守準(zhǔn)則,或至少S會遵守總的合作原則;
(iii)S說了p而又要遵守準(zhǔn)則或總的合作原則,S必定想表達(dá)q;
(iv)S必然知道,談話雙方都清楚:如果S是合作的,必須假設(shè)q;
(v)S無法阻止聽話人H考慮q;
(vi)因此,S意圖讓H考慮q,并在說p時(shí)意味著q。
試舉二例:
1.1研究對象本文運(yùn)用的數(shù)據(jù)來自1998年中國老人健康長壽影響因素研究基礎(chǔ)調(diào)查以及2002年跟蹤調(diào)查(本項(xiàng)目由北京大學(xué)老齡健康與家庭研究中心主持,并得到美國Duke大學(xué)資助)。1998年共調(diào)查了22個省市自治區(qū)8959名80歲及以上的高齡老人,其中包括2418名百歲人。2002年新增了4894位65~79歲老人子樣本,將年齡范圍擴(kuò)大到65歲及以上所有年齡。
1.2調(diào)查工具采用在MMSE基礎(chǔ)上略加修改的適用于高齡老年人的認(rèn)知量表。在高齡老人健康長壽調(diào)查中認(rèn)知能力的測量是根據(jù)問卷C部分(能力測試)除去C2-2以外的所有24個小問題計(jì)算得到。問卷C(能力測試)部分包括C1部分(一般能力)、C2部分(反應(yīng)能力)、C3部分(注意力及計(jì)算能力)、C4部分(回憶能力)和C5部分(語言、理解與自我協(xié)調(diào)能力)。這24小題中,問題C1-6“一分鐘說出的食物數(shù)”作為7分(即每說出一個食物計(jì)1分,說出7個及7個以上為7分),其他23小題各為1分,共計(jì)30分[1]。
1.3方法采取入戶調(diào)查的形式,對符合條件的老年人進(jìn)行逐個問卷調(diào)查。所有的入戶訪問調(diào)查由一名調(diào)查員、一名登記員和一名醫(yī)務(wù)人員共同進(jìn)行,醫(yī)務(wù)人員對被訪高齡老人進(jìn)行基本健康體格檢查,調(diào)查前先組織調(diào)查人員進(jìn)行培訓(xùn),學(xué)習(xí)調(diào)查工具的使用,以保證調(diào)查質(zhì)量。
1.4老年人輕度認(rèn)知功能損傷的篩選標(biāo)準(zhǔn)美國Mayo神經(jīng)病學(xué)研究中心及Petersen[2]提出的MCI推薦標(biāo)準(zhǔn):MMSE至少24分。國內(nèi)肖世富[3]等將MMSE分值定在18~28分作為納入MCI的標(biāo)準(zhǔn)。筆者按《中國高齡老人健康長壽調(diào)查數(shù)據(jù)集(1998)》中定義:“認(rèn)知健全”為24~30分,“低度認(rèn)知損傷”為18~23分,“中度認(rèn)知損傷”為10~17分,“重度認(rèn)知損傷”為0~9分為標(biāo)準(zhǔn)篩查MCI[4]。
1.5統(tǒng)計(jì)學(xué)方法應(yīng)用SPSS13.0軟件包對全部數(shù)據(jù)資料進(jìn)行統(tǒng)計(jì)學(xué)處理。
2結(jié)果
2.1一般情況2002年跟蹤調(diào)查共計(jì)有16064名65歲及65歲以上的老年人,其中包括3321名百歲老人。其中能計(jì)算得出認(rèn)知能力得分(即問卷C部分除C2-2以外的所有題目答案無缺失)的共有6796人,年齡65~111歲。
2.2調(diào)查結(jié)果
2.2.1認(rèn)知能力概況在最終分析的6796名老年人中,認(rèn)知健全的有5843人,占86.0%,低度認(rèn)知損傷的有715人,占10.5%,中度認(rèn)知損傷的有209人,占3.1%,重度認(rèn)知損傷的有29人,占0.4%。
2.2.2年齡與認(rèn)知能力得分情況見表1。
表1按年齡分的老年人的認(rèn)知能力(人)
2.2.3受教育年限與認(rèn)知能力得分情況見表2。
表2按受教育年限分的高齡老人認(rèn)知能力(人)
2.2.4性別差異與認(rèn)知能力得分情況見表3。
表3按性別分的老年人的認(rèn)知能力(人)
3討論
3.1密切關(guān)注MCI人群MCI是介于正常衰老與癡呆之間的認(rèn)知功能缺損狀態(tài)。MCI的概念最早由Petersen[5]提出,特指有輕度記憶或認(rèn)知損害但未達(dá)到癡呆的老年人,其病因不能由已知的醫(yī)學(xué)或神經(jīng)精神病狀況解釋。美國神經(jīng)病學(xué)研究所(ANN)報(bào)道每年MCI進(jìn)展為AD的發(fā)生率為6%~25%,Petersen等[6]對MCI患者進(jìn)行了近3年隨訪研究,發(fā)現(xiàn)有10.0%~15.0%的MCI患者在1年后發(fā)展為AD,該數(shù)據(jù)表明,MCI者比不常老年人發(fā)生癡呆的比例高10倍,且2/3AD患者是由MCI轉(zhuǎn)變而來。國內(nèi)于寶成等[7]對部隊(duì)老干部的調(diào)查數(shù)字為7.55%。因而學(xué)者們認(rèn)為MCI(特別是遺忘型MCI,即Alzheimer型MCI)是由老年發(fā)展為AD的過渡階段,是AD的主要危險(xiǎn)因素。可見對MCI的早期干預(yù)有助于AD的防治。
3.2認(rèn)知功能隨年齡增加而遞減的趨勢明顯表1顯示,老年人的認(rèn)知功能隨年齡變化非常明顯,老年人認(rèn)知功能健全的比例從65~79歲組的53%下降到100~111歲組的4.5%。雖然,現(xiàn)實(shí)生活中也有不少健康的百歲老人,但平均起來看,在高齡期,認(rèn)知功能的減退仍隨年齡增大而加速。國外研究表明,年齡是70歲及以上老人群體認(rèn)知功能最好的預(yù)測因子,這可能與生物學(xué)生理學(xué)規(guī)律有關(guān)[8]。Lyretsos[9]等的研究也得出MMSE分隨年齡增大均有不同程度認(rèn)知功能減退的結(jié)論,且年齡越大減退程度越重。
3.3受教育年限對認(rèn)知功能的影響表2中顯示老年人所受教育程度的年限長短對認(rèn)知功能有一定的影響。輕度認(rèn)知受損的老年人中,受教育年限為0的構(gòu)成比為66.0%,受教育年限為1~2年的構(gòu)成比為10.3%,受教育年限為3~4年的構(gòu)成比為9.7%,受教育年限為5~6年的構(gòu)成比為7.1%,受教育年限為7~9年的構(gòu)成比為3.9%,受教育年限為10~12年的構(gòu)成比為2.0%,受教育年限為≥13年的構(gòu)成比為1.0%??梢娊逃龑φJ(rèn)知功能有積極的作用,可減緩認(rèn)知能力的下降。因此,平時(shí)應(yīng)該鼓勵老年人多學(xué)習(xí)、多讀書、多接受新的信息。“老有所學(xué)”也是老年認(rèn)知功能的保健要求。
3.4男性認(rèn)知健全比例高于女性表3顯示老年人認(rèn)知功能存在性別差異,中國男性高齡老人的認(rèn)知功能明顯強(qiáng)于女性高齡老人,而且隨著年齡的增加男性高齡老人與女性高齡老人的認(rèn)知功能差異不斷擴(kuò)大。此與許多研究結(jié)論一致,可能與社會文化因素的影響有關(guān)[10]。女性較男性長壽,增齡本身可能導(dǎo)致認(rèn)知逐漸下降,隨年齡增大Alzheimer病等各種類型癡呆患病危險(xiǎn)性增高[11],也是認(rèn)知功能性別差異的因素之一。因此,提示普遍對老人認(rèn)知功能變化重視的同時(shí),對女性老人認(rèn)知變化更應(yīng)注意。
4護(hù)理對策
4.1正確地對待老年、保持積極心態(tài)和良好情緒老年人的心境對認(rèn)知功能的影響很大,消極情緒降低認(rèn)知效應(yīng),積極情緒增強(qiáng)認(rèn)知效應(yīng)。因此,老年人應(yīng)不斷進(jìn)行自我調(diào)節(jié),樂觀、積極地生活,以促使認(rèn)識功能的健全狀態(tài)能長久維持。子女們應(yīng)持寬容的態(tài)度,不能嫌棄、諷刺和挖苦,幫助老年人樹立信心,提高記憶力。
4.2改善飲食結(jié)構(gòu),保證營養(yǎng)多食雞蛋、魚、肉,補(bǔ)充和供給卵磷脂、乙酰膽堿,可增加血液中有助于記憶的神經(jīng)遞質(zhì),多食豆類、麥芽、牛奶、綠色蔬菜、堅(jiān)果等,有助于核糖核酸補(bǔ)充入腦內(nèi),提高記憶力。吸煙對認(rèn)知功能有害,適量飲酒能防止認(rèn)知功能的下降。因此,平時(shí)應(yīng)盡量做到戒煙、酒。
4.3進(jìn)行適當(dāng)?shù)捏w育鍛煉大量研究結(jié)果表明參加一定強(qiáng)度的體育鍛煉(慢跑、散步、太極拳、太極劍等)可以延緩老年人的認(rèn)知功能的衰退,改善認(rèn)知功能障礙,在預(yù)防老年癡呆方面有積極的意義。建議老年人從事多種健康有益的體育活動,從而平衡發(fā)展機(jī)體的功能,增進(jìn)大腦健康。
4.4加強(qiáng)認(rèn)知訓(xùn)練通過認(rèn)知訓(xùn)練可以幫助老年人增強(qiáng)記憶功能和智能。看報(bào)、讀書、下棋、看電視與學(xué)習(xí)電腦、學(xué)外文單詞、背誦詩詞等,與人交談討論,保持良好的社會互動,都可以幫助保持和增強(qiáng)記憶功能與智能。用復(fù)述的方法強(qiáng)化記憶,讓老人聽熟悉的歌曲,一起聊過去經(jīng)歷過的事情,參加感興趣的活動,建議老人寫日記、周記,將做過的事記下來,有助于記憶,記備忘錄,避免將要做的事情遺忘[12]。
4.5藥物治療藥物治療有很多,目前國內(nèi)外正致力于MCI的干預(yù)研究,給予促智藥或改善認(rèn)知功能的藥物,如維生素E、銀杏葉制劑[13]、金思維[14]、加味五子衍宗顆粒[15]、還腦益聰膠囊[16]、都可喜[17]、小劑量多奈哌齊(商品名:安理申)[18]對老年輕度認(rèn)知功能障礙有較好療效。
MCI的研究是衰老和癡呆領(lǐng)域的重點(diǎn)。因AD不可逆轉(zhuǎn),而MCI患者通過早期干預(yù)治療可延緩或阻止病情進(jìn)展為AD。因此,密切關(guān)注MCI人群,加大對其健康干預(yù)的力度,越來越迫切地?cái)[到我們面前。預(yù)期通過對MCI的有效干預(yù)和護(hù)理措施,將可顯著降低癡呆的發(fā)病率,提高老年人的生活質(zhì)量,使其有一個健康、美好的晚年生活。這對于我國即將到來的老齡社會也將有積極意義。
【參考文獻(xiàn)】
1敖晉,柳玉芝.中國高齡老人認(rèn)知下降及相關(guān)因素.中國心理衛(wèi)生雜志,2004,18(2):119-122.
2PetersenRC,DoodyR,KurzA,eta1.Currentconceptsinmildcognitiveimpairment.ArchNeurol,2001,58:1985-1992.
3肖世富,姚培芬.老年人輕度認(rèn)知功能損害的神經(jīng)心理測驗(yàn)研究.臨床精神醫(yī)學(xué)雜志,1999,9(3):129-132.
4中國高齡老人健康長壽研究課題組.中國高齡老人健康長壽調(diào)查數(shù)據(jù)集(1998).北京:北京大學(xué)出版社,2000,125.
5PetersenRC,SmithGE,WaringSC,etal.Aging,memory,andmildcognitiveimpairment.IntPsychogeriatr,1997,9(Suppl1):65-69.
6PetersenRC,SimithGE,WaringSC,etal.MildCognitiveImpairment:ClinicalCharacterizationandOutcome.ArchNeurol,1999,56(3):303-308.
7于寶成,王玉敏,田京利,等.軍隊(duì)離退休干部輕度認(rèn)知功能損害的患病率調(diào)查.中國行為醫(yī)學(xué)科學(xué),2002,11(5):505.
8顧大男,仇莉.中國高齡老人認(rèn)知功能特征和影響因素分析.南京人口管理干部學(xué)院學(xué)報(bào),2003,19(2):3-13.
9LyretsosCG,CHENLS,AnthongJC.Cognitvedeclineinadulthood:An11.5yearfollow-upoftheBaltimoreEpide-miologicCatchmentAreastudy.AmJPsychiatry,1999,156:58-65.
10張永莉,趙貴芳.城市老年人認(rèn)知功能及影響因素的調(diào)查分析.山東精神醫(yī)學(xué),2004,17(4):215-217.
11RaplanandSadocr.SynopsisofPsgchiatry,8thed.Baltimore:Williams&W:Irins,1998,328.
12白嬌嬌,馮秀卿.對老年人輕度認(rèn)知功能障礙的調(diào)查研究.實(shí)用護(hù)理雜志,2003,19(1):57-78.
13嚴(yán)鐳,王樹聲.銀杏葉制劑對老年癡呆病人早期認(rèn)知功能的影響.中國老年學(xué)雜志,2002,22(5):175-177.
14田金洲,朱愛華.金思維治療社區(qū)輕度認(rèn)知損害老年患者記憶減退癥狀的1年隨訪.中國中藥雜志,2003,28(10):987-991.
15王學(xué)美,富宏.加味五子衍宗顆粒治療輕度認(rèn)知障礙的臨床研究.中國中西醫(yī)結(jié)合雜志,2004,24(5):392-395.
與傳統(tǒng)的機(jī)械工程相比,機(jī)械電子工程已經(jīng)超越了單一的學(xué)科,顯而易見,機(jī)械電子工程是一個交叉學(xué)科,它充分的融合機(jī)械技術(shù)與信息技術(shù),這就要求其在進(jìn)行設(shè)計(jì)的過程之中必須充分考慮和應(yīng)用自己的設(shè)計(jì)方法,在實(shí)際的設(shè)計(jì)過程之中,設(shè)計(jì)人員往往采用自上而下的設(shè)計(jì)方法,這種設(shè)計(jì)方法是機(jī)械電子工程設(shè)計(jì)之有的方法。
1.2產(chǎn)品上的差異
機(jī)械電子工程的另一個特點(diǎn)就是其產(chǎn)品上的與眾不同,與一般的產(chǎn)品不同,機(jī)械電子產(chǎn)品的結(jié)構(gòu)看似簡單,但是在實(shí)際的設(shè)計(jì)與開發(fā)過程之中卻融入了很多先進(jìn)的技術(shù)與理念,這就遠(yuǎn)遠(yuǎn)的超越了傳統(tǒng)的機(jī)械,這就是產(chǎn)品的外觀更加的輕盈小巧,同時(shí)可以實(shí)現(xiàn)更加的智能化與現(xiàn)代化,是生產(chǎn)力飛躍的具體體現(xiàn)。
2.機(jī)械電子工程的發(fā)展過程
前文已經(jīng)講過,機(jī)械電子工程并不是一個簡單的孤立學(xué)科,它是一個涉及機(jī)械與信息技術(shù)的交叉學(xué)科,又受到人工智能理念的影響,因此是一個典型的交叉學(xué)科。正是由于該學(xué)科的復(fù)雜性造成該學(xué)科在形成的過程之中并不是一蹴而就的,相反,該學(xué)科在形成的過程之中經(jīng)過了很多階段,經(jīng)過相關(guān)的發(fā)展才最終形成現(xiàn)階段的機(jī)械電子工程:
2.1機(jī)械電子工程學(xué)的開端
機(jī)械電子工程學(xué)的起步階段是傳統(tǒng)的手工生產(chǎn),在這個階段,機(jī)械電子工程學(xué)的發(fā)展十分的緩慢,這是由于此社會的平均勞動生產(chǎn)率相對較為低下,勞動力資源相對也較為匱乏,生產(chǎn)力的發(fā)展與進(jìn)步比較緩慢,但是在一次次的嘗試之中,機(jī)械電子工程還是逐步的發(fā)展起來了。
2.2機(jī)械電子工程學(xué)的高速發(fā)展階段
機(jī)械電子工程學(xué)的高速發(fā)展階段主要是流水線生產(chǎn)線的成功應(yīng)用,這一時(shí)期的生產(chǎn)過程已經(jīng)具有了相應(yīng)的標(biāo)準(zhǔn),在很大程度上促進(jìn)了生產(chǎn)力的發(fā)展與進(jìn)步,并不斷的拓展機(jī)械電子工程產(chǎn)品的種類,逐步滿足社會的發(fā)展與需求。
2.3機(jī)械電子工程的成熟階段
進(jìn)入21世紀(jì),機(jī)械電子工程逐步走入其成熟階段,逐步的形成了其特有的生產(chǎn)體系與發(fā)展體系,并實(shí)現(xiàn)了與現(xiàn)代信息技術(shù)與人工智能技術(shù)的完美融合,進(jìn)入了現(xiàn)代機(jī)械電子工程的成熟階段,不斷的促進(jìn)現(xiàn)代生產(chǎn)的發(fā)展與社會的進(jìn)步。
3.人工智能的發(fā)展史
3.1萌芽階段
人工智能的萌芽階段起源于法國,當(dāng)時(shí)法國科學(xué)家首先研制出了第一部計(jì)算器,從此世界開始了人工智能的研究之路,直至馮諾依曼發(fā)明第一臺計(jì)算機(jī)。人工智能在其萌芽階段和其他技術(shù)一樣,發(fā)展打偶較為緩慢,但是卻為后來的發(fā)展積累了豐富的經(jīng)驗(yàn),為之后的發(fā)展奠定了堅(jiān)實(shí)的基礎(chǔ)。
3.2第一個發(fā)展階段
1956年美國人第一次提出“人工智能”的命題,并進(jìn)行了相關(guān)的研究,這是引起人工智能第一發(fā)展高峰期的標(biāo)志。這一階段的人工智能屬于較為簡單的發(fā)展階段,主要針對的的任務(wù)是:博弈、計(jì)算以及證明等任務(wù)。在這一階段的確取得了一定的成就,這一階段的主要貢獻(xiàn)是大大的解放了人們的思想,使人們認(rèn)識并了解了人工智能的可行性,對人工智能后期的發(fā)展起到了巨大的促進(jìn)作用。
3.3第二個發(fā)展階段
1977年全球召開了第五屆人工智能會議,這是人工智能發(fā)展的第二個階段的開始,由此之后,人們認(rèn)識到知識工程對于人工智能領(lǐng)域的重要意義與價(jià)值,并不斷的進(jìn)行相關(guān)的發(fā)展與研究,促使人工智能與實(shí)際生產(chǎn)相結(jié)合,逐步的推進(jìn)了人工智能的快速發(fā)展與進(jìn)步。也正是在這個階段,人工智能獲得了巨大的飛躍,并表現(xiàn)出廣闊的市場前景,在不確定推理、分布式人工智能、常識性知識表示方式等關(guān)鍵性技術(shù)問題和專家系統(tǒng)、計(jì)算機(jī)視覺、自然語言理解、智能機(jī)器人等實(shí)際應(yīng)用問題上取得了長足的發(fā)展。
4.機(jī)械電子工程與人工智能的關(guān)系
機(jī)械電子系統(tǒng)具有不穩(wěn)定性,這就使得機(jī)械電子系統(tǒng)在輸入與輸出關(guān)系的處理上比較困難。推導(dǎo)數(shù)學(xué)方程的方、建設(shè)規(guī)則庫的方法以及學(xué)習(xí)并生成知識的傳統(tǒng)方法,雖然在解析數(shù)學(xué)方面具有精密性,但是這些傳統(tǒng)的方法還只能適用于一些相對簡單的系統(tǒng)。然而現(xiàn)代社會所需求的系統(tǒng)是紛繁復(fù)雜的,往往會需要一個系統(tǒng)能夠處理多種信息類型。人工智能建立系統(tǒng)所采取的方法中,主要使用的是神經(jīng)網(wǎng)絡(luò)系統(tǒng)和模糊推理系統(tǒng)。神經(jīng)網(wǎng)絡(luò)系統(tǒng)能夠?qū)崿F(xiàn)對人腦結(jié)構(gòu)的模擬人,能夠分析數(shù)字信號并給出參考數(shù)值。而模糊推理系統(tǒng)則是通過模擬人腦的功能,來實(shí)現(xiàn)對語言信號的有效分析。在處理輸入輸出的關(guān)系上,這兩種方法既有共同之處,也存在各自的差異性。神經(jīng)網(wǎng)絡(luò)系統(tǒng)在信息的儲存上是采用分布式的方式,而模糊推理系統(tǒng)則采用規(guī)則方式實(shí)現(xiàn)信息的儲存。神經(jīng)網(wǎng)絡(luò)系統(tǒng)輸入時(shí)由于每個神經(jīng)元之間都有固定聯(lián)系所以計(jì)算量一般都很大,而模糊推理系統(tǒng)的連接是不固定的,所以其計(jì)算量相對較小。人工智能系統(tǒng)的建立于發(fā)展在很大程度上促進(jìn)了現(xiàn)代機(jī)械電子工程發(fā)展與進(jìn)步。在實(shí)際的機(jī)械電子工程的設(shè)計(jì)工作之中,我們必須依靠相應(yīng)的人工智能技術(shù)植入,只有這樣才能更好的促進(jìn)機(jī)械電子工程的發(fā)展,與此同時(shí)最大限度的促進(jìn)人工智能功能的實(shí)現(xiàn)。很顯然這個過程相互促進(jìn)的過程,只有在發(fā)展之中充分的考慮兩只之間的相互結(jié)合,不斷的開拓出全新的技術(shù),促進(jìn)兩者之間的更好的融合才能不斷的促進(jìn)兩者的共同發(fā)展,不斷的促進(jìn)其進(jìn)步,實(shí)現(xiàn)機(jī)械電子工程的不斷發(fā)展,推進(jìn)人工智能的持續(xù)進(jìn)步。